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We know of no universe, whatsoever.
where music is not in the center of the rocks. 0

- Brian Swirnme. Canticle to the Cosmos (1990)
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Chapter 1

Introduction

Over the years computer vision researchers have developed algorithms to interpret

gray scale and color images. These algorithms can be used to extract various types
of information from the images such as relative motion between images (motion-

vision), depth from a pair of images (binocular stereo), surface orientation from a

set of images with different lighting (photometric stereo). surface orientation from a
single image (shape-from-shading and other shape-from-X algorithms). Most of these
algorithms work well in specialized circumstances but not as well in general. They
are not very robust. They work well if everything is perfect. but don't do very well
in sub-optimal conditions. They operate with many restrictive assumptions, which * *
limit their applicability to many real problems. A way is needed !,o create more robust
methods that can be applied to wide range of input images.

One obvious approach is to research ways of enhancing the existing methods to
make them applicable to a wider range of inputs. Another approach is to combine one
or more methods to produce a hybrid method with better, more robust performance. 0
This thesis looks into the latter approach. The resulting algorithms are called fused
algorithms. Fusing of two or more computer vision methods. if they bring different
information to the problem, can create a more robust solution. Itfs like Kalman
filtering: with more sensors you get a better estimate.

This thesis explores and answers the following questions: 0

1. What are the different fusion paradigms and how do they differ?

2. Which fusion paradigm are best for vision problems?

3. How much additional performance and robustness can be obtained via fusion? 0

There are two main approaches to fusing disparate algorithms. I call them the
module-based approach and the variational approach. In the module-based approach.
the fused algorithms are run separately on the input images. The various outputs.
(they might be a sparse depth map from binocular stereo and a dense surface ori-
entation from shape-from-shading), are then combined somehow to generate a single

13
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Figure 1-2: Generic variational-based fusion method flow chart.

solution (see Figure 1-1). The module-based approach is easy to implement since
existing algorithms can be put together in an ad-hoc manner without having to know
much about the inner workings of each algorithm. The outputs are then combined
using physically derived constraints to generate the desired combined solution. The
approach can be applied successfully, but has the disadvantage that this approach
doesn't fully exploit the information coupling between the methods.

The variational approach, on the other hand, closely couples the algorithms to-
gether (see Figure 1-2). This is achieved by formulating a combined cost function
based on the cost functions of the separate algorithms to be fused. The result is a
combined optimization problem which takes into account both the explicit and im-
plicit constraints between the methods. Variational methods, by their nature, can
exploit any orthogonalities (information content) in the methods. By exploiting all
the information, the variational approach has the potential to create robust, well per-
forming combinations of algorithms which can be applied to a wide range of input
images. How to create such algorithms is the focus of this thesis.
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Geometry for left image. Geometry for right image-

Figure 1-3: Example camera and light source geometry for the two images of photo-
topography. •

1.1 Photo-topography

A problem that can benefit greatly from a fused vision algorithm is the problem of

photo-topography. Photo-topography seeks to determine the topography of a planet's
surface based on two images of the planet, taken from two different vantage points at

two different times. This situation is illustrated in Figure 1-3.
In some ways, this situation is analogous to binocular stereo. Unfortunately. the

images are typically taken with two different light source positions as shown in the
figure. The two images that result will, in general. look quite different from each
other even though they are images of the same surface patch. One such set of images
is shown in Figure 9-1 on page 121.

Contrast this with the situation that is normally true for binocular stereo images.

Stereo image pairs are usually taken simultaneously (or nearly simultaneously), from
positions that are near to each other. and with the same lighting. The images that
result look very similar to each other except for the relative shift of objects (i.e. the
disparity) due to their distance from the cameras. If the disparity for all points in
the images and the relative geometry of the cameras is known. then the depth of the
objects can be computed directly. The images are similar, so most stereo algorithms
determine the disparity by trying to match features in one image with features in the
other. Since the images from photo-topography look different from each other. this
matching approach doesn't work.

Photo-topography also shares some aspects with a shape-from-shading problem.
Shape-from-shading takes a gray-scale image of a surface and determines the surface
topography by exploiting the shading information in the image. Shape-from-shading
requires that the surface reflectance properties be known. Assuming the reflectance
properties of the planet's surface are known, we could use a shape-from-shading algo-
rithm to estimate the surface topography from each of the photo-topography images.
Unfortunately, the surface estimates based on each image will typically be different.

They may not even be very similar. In the worse case, the surface estimates from
each image may not have the same orientation: one could be concave while the other
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is convex. Thus planet photo-topography is a perfect problem on which to test a
fusion algorithm based on shape-from-shading and stereo. 0

Photo-topography also has aspects in common with a photometric stereo prob-
lem. Photometric stereo uses two images of the same scene taken with two different
lighting conditions. Both images are from the same vantage point: the camera is not
moved between images. The result is two images that look different but where the
correspondence is explicitly known (a position in one image is always matched with 0
the same position in the other image). If the light positions are far enough apart. it
is possible to determine the surface orientation directly. For Lambertian reflectance.
two images can constrain the surface orientation to two possible values at each point.
With three images, it is possible to find a unique surface orientation at each point.

The photo-topography images have two different light source positions. but the 0
correspondence is based on binocular stereo. Like photometric stereo, the two light
sources can constrain the surface orientation, but unly if the correspondence is known.
Thus in photo-topography, photometric stereo and binocular stereo are closely linked.

Currently, photo-topography problems are solved using a characteristic strips
method [Davis and Soderblom, 1984] or more modern shape-from-shading meth- 0
ods [Van Hove and Carlotto, 1986]. The characteristic strips method uses a general
method of solving partial differential equations and is similar to some early shape-
from-shading algorithms. In this method, the solution is found along strips starting
from a given (or known) point. The solutions obtained are local, and may not cover
the space of interest. 0

1.2 Related Research

This research is most closely related to the work of Horn [Ikeuchi and Horn. 19811.
[Horn and Brooks, 19861, [Horn. 19861, [Horn, 19891, Gennert [Gennert, 1987], and
Szeliski [Szeliski, 1990], [Szeliski. 1991]. The variational (least squares) approach I
have taken is based significantly on the work of Horn [Horn, 1989], [Horn and Schunk,
19811, [Negahdaripour and Horn, 19851 and on insights gained from my background in
control/estimation. The shape-from-shading part of this thesis builds upon the work
of Horn [Horn, 1989], Szeliski [Szeliski, 19911, and Leclerc and Bobick [Leclerc and
Bobick. 19911. The stereo part of this thesis builds on the gray-scale stereo algorithm
of Gennert [Gennert, 1987]. I use the hierarchical basis functions of Szeliski and use
conjugate gradient optimization, as do Leclerc and Bobick [Leclerc and Bobick, 19911.

This research is also related to the work of Hartt and Carlotto (Hartt and Carlotto.
1989], [Heipke, 1992], Wildey [Wildey, 1973], and McEwen [McEwen. 1985] in that
they try to solve the same problem; that is, the determination of planet topography
from a pair of images.

Hartt and Carlotto use a Bayesian formulation with multiple images that in some
ways is very similar to the methods I use. Their cost function and their approach is

however very different. The Bayesian formulation leads them to a cost function of
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the form (using my notation)

U(Z) =/JJ. IE(k)(X,y) - Rk(p,q)I + AIV:z(x.y)i 2dxdy.
k

While they discuss methods of estimating the albedo of the surface, results are shown
for constant albedo surfaces with Lambertian reflectance. 1

They solve their problem using a Markov Random Field Model via a Gibbs distri-
bution [Geman and Geman, 19841. They use the Metropolis optimization algorithm
[Metropolis et al., 19531 with a coarse-to-fine multi-resolution strategy to obtain their
results. They show results for the algorithm on multiple (2) images based on a digital
elevation map of upstate New York. They obtain better estimates when two images
are used instead of one. It is hard to determine from the results they show, but it
appears that their estimates contain quite a bit of error (only the estimated images
are shown). The efficiency of their algorithm is also hard to gauge. They state in
their paper that approximately. 200 sweeps of each image is performed at each reso-
lution. Inferring that they used 60-by-60 pixel images. with 3 resolution levels, and
each sweep evaluated the cost function n times where n is the number of pixels on
that level, the number of function evaluations they required is approximately

N 200* (602 + 302 + 152) (1.2)

S943000 function evaluations. (1.3) 0

This is significantly more function evaluations that the algorithms I have developed
(my algorithms typically require at most 1500 function evaluations for 65-by-65 pixel
images and much less on some images).

Heipke discusses the solution to a multiple image photo-topography problem. In
the paper [Heipke, 19921, he states that he uses a least squares cost function. In
addition, the constraint equations that he develops are the same as mine except that
they apply to more than two images. Since Heipke is not very explicit .n this paper. it
is difficult to tell exactly how he solves the problem. His results are encouraging but
also show that his method is very sensitive to noise in the images. Heipke's algorithm 0
shares many things in common with the algorithms I develop in this thesis since he
starts with the same constraint equations. Even so. his algorithm doesn't perform as
well as my algorithms.

The work of McEwen is based on traditional photoclinometry methods and is
thus profile based. In [McEwen, 19851. McEwen uses information from two images of 0
the same location under different lighting conditions to distinguish between albedo
and reflectance effects. The image sets McEwen uses are taken from nearly the same
location so that the pixel correspondence is easy. In many ways, McEwen's methods
parallel photometric stereo much more than my algorithms.

11 make sirmlar assumptions for most of this thesis
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Wildey basically solves a stereo problem (Wildey. 1973]. He assumes that that

the light source is in the same position for each image and tries to determine pixel

correspondence by matching image brightness. His method estimates the topography
of the planet surface as it proceeds. He mentions an enhancement to this method
that would take into account the estimated brightness of the reconstructed surface.
This enhancement is closely related to my algorithms (and shape-from-shading) and
would be applicable to images with similar lighting.

Another related paper is the shape-from-shading and stereo fusion algorithm of
Grimson [Grimson, 19841. In that paper, Grimson describes a method for enhancing
the surface reconstruction step required after feature-based stereo using shading in-
formation. His method uses the shading information only along features to constrain
the surface reconstruction and is loosely based on the methods of photometric stereo
(Woodham, 1980].

1.2.1 Relation of this thesis to sensor fusion

The goal of this thesis is to investigate ways of combining or fusing two different
computer vision methods. Thus this thesis is related to sensor fusion techniques (also
called data fusion or information fusion in some contexts). Sensor fusion is a way of
combining the information from multiple sensors to create better parameter estimates
than can be achieved with the individual sensors alone.

Fusion has a much longer history than its use in vision algorithms. Researchers
and engineers have been combining disparate sensors to obtain better estimates of
the outside world for a long time. In the literature, three different approaches can
be identified: 1) Fusion via estimation theory. 2) Fusion via decision theory, and 2)
fusion via artificial intelligence methods.

The traditional approach involves the use of Kalman Filtering [Gelb, 1974]. In
Kalman filtering, or estimation as it more broadly called, the sensor physics are an-
alyzed and a noise model is postulated. Based on this information, a cost function
is formulated. Typical cost functions are based on maximum likelihood estimation.
maximum a priori estimation, minimum variance estimation, or least squares estima-
tion. For simple noise models (such as Gaussian white noise), these cost functions
have the form,

mn J = L(x .... ) (1.4)

possibly subject to additional constraints imposed by the physics. L(x....) is some
non-linear functional. This same type of cost function is formed when solving vision
problems using the variational approach [Horn, 1989]. Estimation theory-based fusion

includes methods that rely on Bayesian statistics [Lee, 19901, [Richardson and Marsh.
1988], [Hung et al., 19881, as well as least-squares approaches [Shaw et al., 19881.

Decision theory approaches use Bayesian Reasoning [Thomopoulos, 1989], Shafer-
Dempster Reasoning [Bogler, 1987] or ad hoc methods [Mitiche and Aggarwal, 1986].

mm
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The artificial intelligence methods range from rule-based hypotheses [Belknap et al..
19861, [Belknap et al.. 19861, [Nandhakumar and Aggarwal, 19881. to blackboard 0

schemes [Harmon et al.. 1986], to knowledge representation approaches [Pau. 1989].
to artificial neural networks [Brown et aL.. 1991]. Sensor fusion is an important
problem for mobile robots and military threat detection as evidenced by the above
references.

An important problem in sensor fusion that is not addressed in this thesis is the 0

fusion of widely differing sensors. The problem is particularly difficult for mobile
robots where the sensors may provide information at several conceptual levels. For
example, sensors may be available for wheel rotation, range images, visual images.
touch and sound. Combining information from such disparate sources is much more
difficult than combining information from sources that operate on the same level (such 0

as combining infrared, range and visual images).

1.2.2 Relation of this thesis to vision fusion schemes

The computer vision literature is roughly segmented along module boundaries. These 0

modules are related to our current ideas about how human vision works. For in-
stance there are algorithms for binocular stereo, motion vision, and a whole host
of shape-from-X algorithms. Each of these algorithms performs reasonably well in
ideal conditions but can degrade quickly in typical real-world situations. It has been
suggested by many researchers [Aloimonos and Basu. 1988]. [Waxman and Duncan. 0
19861 that a combination of these modules will do a better job of estimating the ex-
ternal world. Of course, these ideas are firmly supported by estimation theory where
it can be easily shown that adding sensors cannot degrade an estimate and most often
enhances it.

Along these lines, some researchers in the computer vision community have been 0
looking into ways of combining more than one vision cue (and associated algorithm)
in order to obtain either better or more robust estimates of the external world. The
techniques for combining the methods range from those that use Bayesian estima-
tion theory [Matthies and Elfes, 19881, [Hartt and Carlotto. 1989], to those that use
module-based methods [Moerdler and Kender. 1987], [Moerdler and Boult. 1988]. 0

[Grimson, 19841. Another common technique is to use an analytical approach [Wax-
man and Duncan, 1986], [Aloimonos and Basu. 19881, [Hu and Shrikhande, 1990].
relying on the constraints from the fused cues (under particular assumptions) to gen-
erate either a unique or a finite number of possible solutions.

I prefer the estimation-based methods, since all the information available can be 0
exploited, and the assumptions behind a particular method can be quantified. These
methods also rest on a firm foundation. The module-based methods, in contrast.
are more ad hoc. The analytical approach can be used within the estimation-based
approach to constrain the solution.

Si im
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1.2.3 Relation of this thesis to photoclinometry

One of the reasons for this research is to improve methods of planetary mapping. In
particular, this research aims to widen the applicability of computer methods to this 4
difficult task. Current techniques for planetary mapping work either on symmetric
objects or along ridges (Davis and Soderblom, 1984], or use the same methods as
shape-from-shading [Wildey, 1975], [Van Hove and Carlotto. 1986], [Kirk, 1987] al- 0
though the theory was developed independently within the geophysics community.
In that community, shape-from-shading is called two-dimensional photoclinometry.
Important aspects for photoclinometry are the determination of the true reflectance
function for a planet [Davis and McEwen, 1984], [Wilson et al., 1985], [McEwen.
1991], [Helfenstein et al., 1991] and how to deal with non-constant albedo [Davis and 0
Soderblom. 1984]. [Helfenstein et al., 1991].

While there is no doubt that using the correct reflectance function and accounting
for non-constant albedo is important. most of the algorithms in this thesis are for the
simplified case of Lambertian reflectance and constant albedo. Both of these simpli-
fications are not fatal: the algorithms can be easily generalized to other reflectance 0
functions and the non-constant albedo case is dealt with in Section 8.1. In fact, the
algorithms developed will work, without change, with any reflectance function that
is smooth and that doesn't contain multiple extrema.

* E
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Chapter 2

Background
0

2.1 Coordinate Systems

The solution to a photo-topography problem is a description of the surface topog-
raphy. The most straightforward description for the surface is to represent it as a 0

height function over some suitable 2-D domain,' that is

z = Z(x,y). (2.1)

Within the vision literature, there are two different choices for the 2-D domain. The *
image-centered domain uses the coordinates of the image as the fundamental do-
main and assigns a depth (or height) value to the surface point that projects to each
image position. If orthographic projection is used, then the projection mapping is
straightforward. However if perspective projection is used, then this mapping can be-
come quite complex (especially for surface normal calculations). The object-centered 0
domain uses a coordinate system associated with the object and assigns a surface

'Also known as a Monge patch.

0

Ob~ectObject Plane

Image Plane

Image-Centered Coordinate System Object-Cenered Coordinate System

Figure 2-1: Coordinate system choices. 5

21

0

0 0 0 0 0 0 0



Iv

22 CHAPTER 2. BACKGROUND

height value to each point in the domain (see Figure 2-1). Projecting points on the

object to points in the image is straightforward using this representation for either 0

orthographic or perspective projection. However, the projected points, won't in gen-
eral map to the center of each pixel. To obtain values at each pixel then requires
some type of interpolation.

In a stereo system, there is also the choice of whether the coordinate system should

favor one image or the other. Since there is no apriori reason to believe that one image 0
has better information than the other image, it is best to choose a neutral coordinate

system rather than risk biasing the result toward one or the other image.

2.2 Image Generation Process 0

The photo-topography , robt m is basically an inverse problem. We seek to determine
the topography of the object that created the images at hand. Those images are based

on the object (a forward problem). That is, the interaction of light with an object.

as seen by the viewer creates the image. The physics behind this process are detailed 0
in the sections that follow.

The image generation process can be neatly broken into four stages (see also

Figure 2-2),

1. light falls upon an object (object irradiance) * -

2. the light interacts with the object and is re-emitted or reflected (object radiance)

3. the light then travels to the viewer where it is projected onto the image plane.

(image projection and image irradiance)

4. the light is absorbed by the material of the image plane and converted into some

signal that can be sensed (image transduction).

2.2.1 Object irradiance 0

The light that falls on a particular patch of an object depends on the properties of the

light sources that are visible (i.e.. unobstructed) from that patch. Among possible
light sources are point sources, distributed sources. and other surface patches (e.g..

interflection). At each point, ý, on the surface, and for each direction, i, the irradiance

distribution function, E(ý;i) [radiance/solid angle] captures this information. For 0

instance, the distribution function for a single point source, ignoring interflection. is
given by

E(ý; i) = A(i, i0 ) (2.2)

i n m mnn mim lll minn m minl ] l m unn nnm
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Source Radiance Sn Surface Irradiance

Figure 2-2: Image generation process steps.

where A is the light intensity. io is the unit vector in the light source direction, and

6 is a direction vector version of the Dirac delta 2

6(t, t0 ) = 0. when t # io.

Il f(i)(i, io) di f(io), 
(2.;3)

where the integral is over the surface of the sphere S. * *

2.2.2 Object Radiance

The light that is emitted by a surface depends both on the light that impinges on
the surface and the surface reflectance properties. The irradiance distribution func-
tion. E(ý:.) captures all the needed information about the light source, while the 0
surface reflectance properties can be described using the Bidirectional Reflectance

Distribution Function (BRDF). The BRDF is an intrinsic function of the surface and
doesn't depend on surface irradiance. At the point f. the BRDF f(ý: fi: '÷: g) relates
the brightness of the surface patch with normal fi illuminated from the direction ,

and as seen from the direction ý'. Using these two distribution functions, the surface 0
radiance [power/solid angle/area] in the direction ý, can then be defined as

L = JJ f( ;fi:,)E(ý:,i)(g .i)da) (2.4)

0
2This delta function is defined on the surface of the sphere. One way to define it is to repre-

sent the direction t in spherical coordinates, t = (sin 0 cos o,sin 0 sin 0, cos 9)T, so that we require

fo 2  2 (t (0,0),io(0o, o))cosedodO = 1, hence,

((i(0. 8), to(o, 8Oo)) = 6(o - 0o)6(e - Oo)/cos(6o). 0

where 6(.) is the normal scalar Dirac delta.

0
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where H(fi) is the hemisphere of possible light source directions for the patch at X
surface point ý with normal fi, and dw(i) is the solid angle subtended in the direction 0
i. Representing i in spherical coordinates this expression becomes

,12t
L=;f; r f (ý; ft; •'; i) E (; i) sin 0 cos 0 dO do. (2.5)

The two most common reflectance models are the Lambertian model for matte 0
surfaces, and the specular model for shiny metallic surfaces. In the Lambertian case.
the BRDF is independent of the light source direction, normal direction and viewing
direction, directif(; fi; i) = () 

(2.6)

where p(ý) is the surface albedo, or the fraction of light re-emitted by the surface.
Evaluating Equation 2.5 for a Lambertian surface illuminated by a single point source
at infinity, the surface radiance is found to be

L (; fi; ) AP(--) (i - fi). (2.7)

In the specular case, all the light from the direction io is reflected into the direction
2(fi - i0)fi - i so the BRDF is

f(;; fi;,ý; i) = p(.)(', 2(io)fi - go). (2.8)

For a single point source at infinity, the surface radiance for a such a surface is found
to be

L(•; fi; •') = Ap(f)!(6Q, 2(fi. io)fi - ,o) (2.9)

In general. the albedo of a Lambertian surface is different from the albedo of a specular
surface.

See [Wilson et al., 1985], [McEwen. 19851, and (Davis and McEwen, 19841 for a
sampling of the types of radiance functions used within the photoclinometry field.

2.2.3 Reflectance Map

The preceding representation of the surface radiance is a local representation in that
the radiance is defined based on local surface orientation, viewer direction and light
source direction. Many vision researchers have found it convenient to use a represen-
tation of the surface radiance based on a global coordinate systerr. This alternate
representation is called the Reflectance function. Given known surface properties and
a known light source distribution, the reflectance function, R(ý, fi; ÷ ), is defined using
the corresponding surface radiance via a change in coordinates,

R(=G; fiG; -ýG) L(f;ft; ,) (2.10)

I n i i n .-. -, ...,. --.. _ _ _

0 -nnn 0um u mmn uni0ii iii n III0 I0 in 0



2.2. IMAGE GENERATION PROCESS :25

Object 0

Principal Point

Center of projection •

Image Plane
(a)

Y Object 0

Center of projection Lens R

zx

Image Plane

(b)

Figure 2-3: Two Perspective projection geometries. ,

where ýG. fit. and VýG are the surface position. normal vector, and viewing direction
in global coordinates.

2.2.4 Image Projection

Points in the image plane are related to points on the object via perspective projection.
Figure 2-3 shows two perspective projection geometries. Figure 2-3(a) shows the

projection geometry for a camera where the image plane is behind the lens. The

projection of the center of the lens into the image plane is called the principal point. 3 '

Choosing the origin of the image coordinate system to be at the principal point leads
to the simple equations presented in this section.4 Note that objects are projected

onto the image plane in an upside down orientation.
An equivalent geometry is shown in Figure 2-3(b). The only difference between

the camera geometry shown in Figure 2-3(a) and this geometry is that the image plane

has been moved to in front of the lens. While this geometry is not physically possible.

3The center of projection is at the back nodal point for thick lenses.
4 Determining the position of the principal point for a given camera is part of the classic interior

orientation problem (see (Horn, 1986]). 0

• i-i - iffi -- = m mm~ r.U m mm0
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it produces exactly the same image (as can be seen by similar triangles) except that X)
the image is no longer upside down. Mathematically, the difference between these two
geometries is just a sign change in the equations. For instance, the image position r
of the object point R in Figure 2-3(a) is

r R

r . - -R---, (2.11)

while it is r R

r z R.-

for the geometry in Figure 2-3(b). These are Perspective Projection Equations. In
both expressions, i is a unit vector in the direction of the negative optical axis. In 0

the equations that follow, the geometry of Figure 2-3(b) will be used to avoid having
to keep track of the minus sign in the perspective projection equation.

The equations above can be simplified if a special coordinate systc• . is used.
namely a coordinate system with origin at the principal point, and orientation such
that the z and y axes are aligned with the image coordinates and with the negative 0

- axis along the optical axis of the lens. This coordinate system is evident in the
labels assigned to the axes in Figure 2-3(b). For this coordinate system. r i f (a
negative number). Expanded, these equations are

xif (X/Z* *
y/f = Y/Z (2.13)
f/f Z/Z

when r= (x.y.f)T and R = (X.Y.Z)T.

0

2.2.5 Orthographic Projection

The projection equations can be further simplified when the depth range of the object
is small compared to the distance of the object from the camera. The resulting
approximation is called Orthographic Projection. Consider the first order Tavlor's 0
series expansion of the perspective projection equation about a nominal depth Z0 .

r R RY. + T2(Z - Z0 ) + o((Z - Z0 )') (2.141

where R = (X, Y, Zo)T. When (Z - ZO) c Zo. the first order term can be neglected 0

resulting in the orthographic approximation,

r R7(= T2.5
0

0
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0

4

n 0

LesQ n 8 Object • lf

Image Plane

Figure 2-4: Image irradiance.

Orthographic projection is convenient for computer vision problems since the map-

ping is linear. In fact. most shape-from-shading algorithms assume orthographic
projection. Unfortunately. the full perspective projection must be used for photo-

topography to avoid throwing out the very information we wish to estimate (i.e.. the

stereo depth information).

2.2.6 Image Irradiance

The mapping between object points and image points is only half of the story for

image generation. We also need to know how the brightness of the image is affected

by the lens. Figure 2-4 shows that an object patch of area bO projects to an image 0 0

patch of area H5I. Assuming a perfect lens, the image irradiance [power/areal from

this patch is

E(r) = L(.c(r): fi: S(r)).( 2 cos4 a (2. 16

where L(.ir): i: '(r)) is the radiance of the corresponding object patch. d is the

diameter of the lens. and a is the off-axis angle of the projecting ray. In this equation.

'C and .c are functions of r via the projection from image points r to object points.

Equivalently, this expression can be restated using the reflectance function rather

than the radiance function. 0

Etr) = R(,1(r):nfi:(r))-( cos4o (2.a7!

2.2.7 Image Transduction S

The final stage in producing an image is the conversion of light into a signal that can

be used. namely digital form. Whether the digital images are scanned photographs

or are obtained directly via a digital camera, they will contain distortion (either

spatially or in color). The effect of this distortion can be removed via calibration

so that the measured image irradiance can be related to tht object radiance in a

@
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put in the especially simple form,

bI

E(r) = R(&(); fi; s-(r)) (2.18)

where the cos' a and constant scale factors have been removed as part of the calibra-
tion. Equation 2.18 is referred to as the Image Irradiance Equation.

2.3 Stereo

The images in a photo-topography problem are taken from two different vantage
points (see Figure 2-5). If the relative position of the cameras is known, and it Is
known which pixels in the left image correspond to which pixels in the right image
then it is possible to determine the depth directly for the surface points that map
to those pixels. This is the basis of binocular stereo. Of course, the hard part is
determining the correspondence between pixels.

For normal stereo situations, the cameras are close together and both pictures
are taken simultaneously.' The stereo images that result look very similar, mostly
differing in the shift of objects in each image caused by perspective projection. The
difference in the shift of an object point in the left image and the right image is called
the diisparil. The photo- topography images are take o h sareras that are often far

eThe stereo images of aerial photography are taken neam o styne-ously.diffrin intheshif ofobjctsin ech mag cased y prspctie prjecion Th
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apart and at different times. In this case, it is possible (because of differing lighting)
for the two images to look very different. This makes the correspondence problem 0
even harder.

To see how the depth can be determined directly from the disparity consider
Figure 2-5. Points in each image map to rays in 3-space. If corresponding points
in each image map to rays that intersect, the depth can be determined using simple
geometry. If the rays don't intersect, we can use geometry to determine the depth of 0
the point that is halfway between the rays at their closest approach.

First. find the relationship between the two camera coordinate systems. Suppose
we know the position of the principal point of each camera in some global coordinate
system, P1 and P 2. and we also know the rotational transformation matrices from
each local camera coordinate system to the global coordinate system. T1 and T2 , then S
the coordinates of the point. ý, in the two camera coordinate systems is

R, = Tl-(ý - P 1)
R 2 = T2-(• - P 2 ). (2.19)

Equations 2.19 are the Stereo Constraint Equations which relate the position of points
in the global coordinate system to points in each of the local camera coordinate
systems.

By removing ,c from the above equations and defining b = P 2-Pl. the relationship
between a point in Camera Coordinate System 1 and a point in Camera Coordinate S
System 2 is found to be

Ri = T7lb + T7-1T 2R2. (2.20)

Now. determine the relationship between disparity and depth. Suppose we are
given image points. ri = (Xi, VY. f)T and r 2 = (X2, 2 , f)T (one in each image). that

correspond to the same surface point, then the best estimate for the surface position
can be found by finding the point on each ray (along r, and r 2 ) where the distance
between the rays is minimized. That is, the problem

min i-sri + b + tr2112  (2.21)
Sl.t 0

must be solved where s and t are scalar parameters. For now assume all the vectors
are given on the same basis.

By differentiating the above equation with respect to s and t. setting the resulting
equations to zero, and solving, it is found that the minimum occurs when

(r 2 r 2)(b. ri) - (r, . r 2)(b r 2 ) (r 2 x b) . (r2 x rI)
(r , • r1 )(r 2  , r2 ) - (ri • r2)2  1r2  x r 1l' (2.22)

(r, - r 2)(b. r1) - (rf . ri)(b r 2 ) (ri x b) . (r 2 x ri)

(r,. ri)(r2 , r 2 ) - (r,. r 2 )2
- r2 x r1 112
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If ri. r 2, and b are coplanar then the above set of equations is just a fancy way of
writing the Law of Sines.

The global position of the point halfway between the two rays at the closest
approach is then

I
= P1 + sr, + I(-sr, + b + tr 2). (2.23)

2
b 1 (T2r 2 x b)y (T2r 2 x Tlrl)Tir,
2 2 JJT2r 2 x Tirn112

1 (Tir, x b). (T2 r2 x Tlrl)T2r2 (224)+2 11Thr2 x Tirl 2 (.

where Equation 2.24 has been written for P 1, P 2, and b given in global coordinates.
and rl. r 2 given in the appropriate local camera coordinate system.

The equations simplify greatly if the rl, r 2, and b are coplanar (i.e.. if (r 2 x rl )-b =

0), the cameras are aligned so that the optical axes are in the direction -i, and i is
along b (•" is chosen to complete the right-handed coordinate system). This is exactly .

the stereo geometry that is assumed to exist for most binocular stereo algorithms.
With these restrictions, the equation above becomes

b b(r, + r 2)

2 2(xl - X2) (2.25)

where ri = (xi, y, f)T, r 2 = (X2, y2 , f)T, and b (b, 0.0)'. The quantity (X2 - X1)

in the above equation is the disparity mentioned earlier. In this form, the depth z is
found to be b + bf

2(2.26) 0

Note that the disparity can be mapped directly into depth only in this special situa-
tion. For more general situations. Equation 2.24 must be used.

2.4 Photo-topography Problem Formulaton 0

We now have enough background to formulate the photo-topography problem. The
problem to be solved is:

Given two images of an area on the planet's surface, taken at two differ- 0
ent times from two different positions, determine the topography of that
section of the planet's surface.

The solution is constrained by geometry and the image generation process. Specifi-
cally each image is constrained by the perspective projection equation (Equation 2.12),
the image irradiance equation (Equation 2.18) and the stereo constraint equations 0

(Equations 2.19).

00
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Combining these equations we find that the photo-topography problem is constr-
ained such that 0

El"(r1 ) = R(l'(ý: fi: -T rl)

E{2)(r2) = R(2)(.C: fi: -T 2r2) (2.27T

where
- Tll( "-P1 ).Tli.)

r 2 - T 1 I(RG - P 2 )

are the local image plane position vectors (one in each camera coordinate system).
E"') and Et2 ) are the image brightness measured in the first and second cameras
respectively, and RM') and R(2) are the reflectance maps based on the first and second
light source positions. As before, ý, is the surface position in global coordinates.

Equations 2.27 and 2.28 are the General Photo-topography Constrainf tquations.
They state that in the absence of noise, the photo-topography images E(') are created
by the interaction of light with the underlying surface z(ý) via the reflectance maps
R(O and as seen by the two cameras. Note that these equations can be used to
generate a set of photo-topography images given the surface description. z(S). In
contrast. determining the surface topography given the images. camera geometry and
reflectance properties. is an inverse problem.

It's instructive to review the assumptions behind these equations. The perspec-
tive projection equations assume perfect lenses and perfect knowledge of the camera
principal points and optical axes. The surface radiance equation assumes we have
perfect knowledge of the surface reflectance properties. light source directions, and
all surface points are visible from both cameras (i.e., there are no self occlusions).
The simplified form of the image irradiance equation assumes we either have a per-
fect sensor or we can perfectly calibrate the sensor to remove any abnormalities from
the sensor/lens combination. The stereo equations assume we know th, relative posi-
tion and orientation of the two cameras perfectly. The only assumption that is truly
artificial is the assumption of perfect knowledge of the reflectance maps. 6 With more
careful measurements and more expensive equipment it is possible to approach per-
fect knowledge of the other assumptions. The assumption that all surface points be
visible merely restricts the bumpiness of the surface that this research is applicable
to.

6Especially since the effects of non-uniform albedo and interflection are buried in the reflectance
maps.
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Figure 2-6: Introduced global Coordinate system.

2.5 Simplifications

The equations in the last section dealt with the general case (subject to the assump-

tions mentioned in that section). There are several simplifications that make the
equations easier to solve.

2.5.1 Special global coordinate system. 0

So far all the equations have been written for any global coordinate system. I would
now like to restrict the equations to a particular global coordinate system, namely the
coordinate system shown in Figure 2-6. This coordinate system is defined as follows

1. Place the origin of the global coordinate system half way between the principal •
points of the two cameras. (That is, place the origin at the point P1 + b/2.)

2. Choose the jo direction along the line connecting the two cameras,

*0 = b/I1blI. (2.29) 0

3. Choose io as the average optical axis direction of the two cameras projected
into the plane perpendicular to x0 . (That is.

0= - (i*0. kO) + (i2 - (i 2.* )*0)

11 (il - (il *•)*o) + (i2 - (i. 2o)o)i (2.30)

4. Choose S'o in the direction of io x *0 in order to create a right handed coordinate
system.

5. Also set up a virtual image plane with f = 1. 0

In this coordinate system, P1 = -b/2, P 2 = b/2, and b = (b,0,0)T.

0 0 0 0 0nn
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2.5.2 Removing the view direction dependence.

A common simplification for computer vision is the assumption of a Lambertian

reflectance map. Since a Lambertian surface reflects light equally in all directions.
we see from Equation 2.7 that the radiance function is not dependent on the viewing
direction. Thus the dependence on -' can be removed from all the equations.*

Note that the viewing direction can also be removed from the equations when the
field of view is small. In this case, the viewing direction is approximately the same
for all points on the surface and its effect can be subsumed into the reflectance map.
Doing this would, of course. introduce an error into the calculations. This error would
be small for photo-topography since the cameras are so far away from the surface.
The large viewing distance requires the use of a telephoto lens which has a small field
of view.

2.5.3 Constant albedo.

Thus far the equations have included terms that denote position on the surface 1.c
The main reason for this dependence is to take into account varying albedo. varying
reflectance properties. or both. To simplify the situation we could assume that the
reflectance properties. albedo. or both are constant across the surface. Assuming the
reflectance properties. but not the albedo. are constant across the surface results in
a reflectance function that is separated,

R(ý fi: ,) = p(ý) f(fi;i,) (2.31)

where R(i; ') is the reflectance function for a surface with uniform albedo. no in-
terflection. and no self occlusion. As for R, any light source effects are included in
R?. S

"When both the reflectance ans albedo are constant, the dependence of the re-
flectance map on surface position can be removed,

R(=;fi: R(fi;÷'). (2.32)

Combined with either Lambertian reflectance8 or when the field of view is small. the
dependence on -r can be dropped also.

R(-: fi; ÷) R(fi). (2.33)

This is the representation of the reflectance function that is seen most often in the
vision literature. The simplification restricts the applicability of that research so

'This is true for any reflectance function that is view independent, not just Lambertian
reflectance

SOr any other view independent reflectance function.

• • •• • •• •
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Figure 2-7: Coordinate systems with aligned optical axes.

that only uniformly colored surface patches have the possibility of being estimated
correctly. When algorithms based on this simplification are applied to images that
violate these simplifications, we would expect errors at the transition between different 0

colored parts of the surface, within differently colored areas, or both. Trying to
estimate both the surface topography and surface albedo substantially increases the
number of unknown variables (possibly by a factor of 2) and significantly slows down
the convergence (see Section 8.1).

2.5.4 Aligned cameras.

The final simplification that can be made is to align the cameras so that their optical
axes are parallel (which will also be parallel to the global coordinate system's i0 axis
by construction). This coordinate system is shown in Figure 2-7. When the cameras
are aligned, the rotational transformations T, and T2 are identity transformations
which simplifies the stereo equations (Equations 2.19) considerably to

R , = ý - P i, (2.34)
R2 = ý - P2.

While this situation is very unrealistic for the photo-topography problem. any set of

images can be re-projected into this coordinate system (see Section 8.5). Hence this
simplification does not seriously restrict the applicability of the research.

2.5.5 The simplified equations.

The rest of the thesis is based on equations that take into account all of the simplifi-
cations described. In particular, the simplifications in the following list are made:

"0 0 0 0 0
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"* A special global coordinate system that is halfway between the two camera

positions is used.

"* All surface points are assumed to be visible from the two cameras.

"* The reflectance properties of the surface are assumed to be constant with no
interflection and no mutual occlusion.

" The radiance properties of the surface are assumed to be Lambertian. allowing
the view direction dependence to be dropped from the reflectance equations.

" The surface is assumed to have constant albedo allowing the position depen-
dence to be dropped from the equations.

" The camera optical axes are assumed to be aligned with each other allowing the
rotational transforms to be dropped from the stereo constraint equations.

Unless noted. the rest of the thesis assumes that all these simplifications hold. I will
specifically point out results that apply to the more general case. Taking into account 0

all of these simplifications we find that the simplified photo-topography problem is
constrained such that EI1}(rj) = Rl"(fi)

E( 2)(r2) = R 1)(fi) 
(2.35)

where
(1 + b/2)f _+ b/2

rl=

ri =(ý + b/2).- i:i ý -" (236
r2=(,c - b/2)f -b/2 (.6

(ý - b/2). i 2  i2

If we define z = •o and r = fs/z, then the constraint equations can be written

E ±1)(r + Lb) =R(-(fi),
2b (2.37)

E 2)(r - Lb - R(2)(fi).

The definitions for z and r above introduces a peculiarity into the equations: the

units for z and r are not the same. In particular. z. b, and ý are in planet units (say
miles). while r and f are in camera units (say millimeters).

I find it convenient in subsequent chapters to use a slightly different version of

these last equations where the components of r = (x, y, f) are explicit and the normal
vector ii is parameterized using gradient components p and q.

fi = (-p. -q. 1) (2.38)

VrpT + q_7+ 1

0 0 0 0 0 0! -
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Figure 2-8: Camera calibration geometry.

where fJz

fZ + z (2.39)

f=•.
y Y + z

Equation 2.39 are referred to as the Integrability Constraint Equations since they
relate the surface normal components to the partial derivatives of the surface height •
z. The equations can be used constraint the values of p and q that are consistent
with an underlying surface.

Writing Equations 2.37 in terms of (x, y) and p and q produces the Photo-topography
Constraint Equations

E(f)b( + L, y) R(l)(p. q), 0
2z(2.40)

E(2 )(x _ R- y (p,)q).

I will be working with these equations in the chapters that follow.

2.6 Camera Calibration

In order to relate positions in the image to direction vectors in 3-space. the origin
of the camera coordinate system must be known. Finding this origin is part of the
interior orientation problem of classical optics. As mentioned in Section 2.2.4, this
origin is the principal point in the image plane. In the special coordinate system
of Figure 2-8, the position of the image plane origin with respect to each camera
coordinate system origin can be specified by a vector v = (v, v, f)T. These vectors
specify the offset (in pixel coordinates) of the image plane for each camera. Suppose
uo is the pixel position of an object point in the global image and v0 is the position

J I / l II N INI- i l l ilmmm m • I l m mmmmmmm elm m in

0. . m 0,, m m m m n • [ 0 m m0 0 0m m00



2.6. CAMERA CALIBRATION 37E

of the origin of the global image plane in global coordinates, then given the pixel X
position of the projection of this this same object point in the camera images ul and 0
u2 . the offset of each image plane is

fb (.1
Vi Vo + Uo - u1 + 2Z-'-' 4"

2 Z0
fb

V2= Vo + u0 - U2 - . (2.42)

The values of v, and v2 can be quite large in the aligned coordinate system indicating
that the images must be shifted far away from the camera coordinate system origin. 9

While this is not possible physically. it is a consequence of re-projecting real images
into the aligned coordinate system. 10

* 0

9This is especially true with the field of view is small.
"10See Section 8.5 for how to do this.

• • • •• • •0
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Chapter 3

Fusion Strategy

This chapter presents my general solution strategy to the photo-topography problem.
The idea is to closely couple the solution of shape-from-shading and stereo so that
each can help the other. The important thing is to take into account the strengths of
each method and use each method to cover the weaknesses of the others.

The first step in solving the photo-topography problem is to analyze the infor-
mation available as part of the problem. The photo-topography problem has two
information sources: 1) the gray levels in the each image are an indication of the
surface orientation with respect to the light source and 2) assuming corresponding
pixels in each image can be matched up. the stereo information can be used to recover * *
the shape. Of the two, the gray level information is more directly accessible since
no correspondence must be found. Finding the correspondence between pixels is a
classical problem for stereo algorithms and is very hard.

"The photo-topography images also offer one other source of information. Since
the images are typically taken with two different light source positions, the gray 9
levels of corresponding pixels constrain the set of possible surface orientations as they
would for photometric stereo [Woodham. 19801. For Lambertian reflectance, this set
contains at most two orientations. Since extracting this information relies on pixel
correspondence. it has the same limitations as the stereo information.

When designing a fusion algorithm it is also important to analyze whether the
information sources are independent or not. By independent I mean, 'Is it possible
to differentiate between the two information sources"? Or said another way, -Given a
combined signal containing two or more information sources is it possible to estimate
the relative contributions of each source'? Or said a third way, 'Given a combined
signal are the information components observable'? 0

Doing this analysis on the photo-topography images we find that the informa-
tion sources are indeed independent. The shading information is strongest when the
shading is smooth, while the stereo information is strongest near surface discontinu-
ities (which contribute to shading discontinuities) and when the cameras are widely
separated. The photometric stereo information is strongest when the light source 0
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Shading Stereo Lighting

Shape from Surface Surface
Shape from Shading shading constraint onsentation

Binocular Stereo Correspondence Binocular Correspondence
constraint stereo constraint

Photometric Stereo Correspondence CoL.espondence Photometric 0
constraint constraint stereo

Table 3-1: Photo-topography problem information sources

positions are widely separated.
Given the previous analysis we would expect that the best estimates of the surface

would be found when the images contain large regions of smooth gray level changes
intermixed with areas of rapidly changing gray level, the cameras are well separated,
and the light source positions are separated. 0

There are several possible fusion paradigms as I discussed in Chapter 1. The
most promising fusion paradigms take into account the most amount of information.
The modularized approaches (where existing vision algorithms are applied to the
problem individually and where these individual estimates are then combined after-
wards) exploit some of the information but not all of it. In particular, if you think *
of these problems in terms of a table or matrix as in Table 3-1, the modularized
approaches exploit the information along the diagonal but do not take into account
the off-diagonal coupling between methods. On the other hand, I use a close coupled
approach based on variational calculus that exploits all the coupling inherent in the
problem. This approach is not a panacea, however, as we will see later. It is still 0
possible to choose cost functions that don't encourage cooperation among the var-
ious information sources. However, by understanding the couplings inherent in the
problem a suitable cost function can usually be found.

3.1 Variable representations 0

The most important decision when developing a fusion algorithm is the variable
representation. Choose the right representation and everything will work together
smoothly. Choose the wrong representation and the algorithm may be hindered by 0
slow convergence, local minima, discontinuities, etc. Aside from this performance
effect, how can a good representation by recognized? I can't offer a general solution.
but I can offer some rules of thumb.

* A good representation captures all the necessary information in the problem
with no redundancy. For example it is better to use a parameterized family of

• • •• • •• •0
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functions rather than a digitized version of the same function if the number of
parameters would be much less than the number of sampled points. 0

9 A good representation can easily capture the constraints of the problem. For
example. it is better to use a function that automatically matches the boundary
conditions of a problem rather than to impose the constraint using penalhv
functions or Lagrange multipliers.

* A good representation usually has equations that are simple and easy to under-
stand.

e A good representation is as close as possible to the problem. It is not removed
by several integrations. differentiations, or other mappings that can introduce 0

non-linearities, bias. drift, or additional unobservable parameters.

* A good representation allows for easy information exchange between the differ-
ent information sources in the problem. Such a representation would directly
express constraints from one information source so that the other sources will 0
automatically take them into account.

The variable representation defines the space that will be searched. Usually. so-
lution spaces that are lower dimensional, smoother, and more bowl-like will make
finding the solution faster and easier. * *

I present four different variable representations for the photo-topography problem
in Chapter 4. The four representations highlight the importance of choosing the right
representation.

3.2 Cost functions 0

After the choice of variable representation, the choice of cost function is the next
important. Like choosing the right variable representation. choosing the right cost
function will affect the performance of the algorithm and the algorithms robustness.

Building a closely coupled fusion algorithm, requires that all the zoverning equa- 0

tions. constraints, and desired outcomes be formulated into a single cost function.
usually some sort of energy-based functional. Since everything is combind together
to generate a single scalar value (the cost), the algorithm is free to perform trade-offs.
For instance, the algorithm can trade-off accuracy of the result in order to satisfy
another constraint (such as smoothness). The types of trade-offs that are allowed 0
and/or favored can be controlled by changing the relative weights between terms in
the cost function, or by totally reformulating the cost function (I show examples of
both in Chapter 4).

Cost functions are relatively easy to formulate once a variable representation has
been chosen. Simply write the governing equations in terms of these variables, and

• • • •• • •0
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create the cost function directly from these equations. If necessar sum. integrate orX,

somehow combine the results from the constraints to form a scalar cost. It might be 0
necessary to add some regularizing terms to the cost function in order to produce a
well posed problem (see [Tikhonov and Arsenin. 19771 or [Hadamard. 19231).

Many vision problems require some type of regularization to constrain the solution.

Typically, smoothness is assumed for some variable (such as surface height) and is used
to create a smoothness regularization term. Regularization terms are required when 0
there are too many solutions to a given problem. The regularization terms can then
be used to constrain the set of possible solutions to be physically reasonable. In all the
photo-topography algorithms presented later in this chapter I have included a surface
smoothness term. While the smoothness term is not strictly required (since shape-
from-shading problems do have unique solutions),' the regularization term serves to 0

speed up convergence by making the solution space more bowl-like.
Constraints can be added to a candidate cost function using the method of La-

grange multipliers or by adding a penalty function. The Lagrange multiplier method
is used for hard constraints, while the penalty functions are used for soft constraints.
Hard constraints are required to be met exactly by the solution. while soft constraints 0

need not be met exactly. Hard constraints restrict the space of the feasible solutions.
while soft constraints create bowl-liKe edges on the solution space. Both methods can
be used to help convergence to a solution and to restrict the search space to more
desirable solutions.

Different cost functions can be generated from the same set of equations and 0 0
variable representation by changing the desired outcome. For instance, the cost func-
tion for determining the surface slopes from the photo-topography problem would be
different from the cost function for finding the surface height.

3.3 Solution Techniques

A typical cost function for a vision problem is of the form

min J = JL(u: u'; u";...) dx dy (3.1)

where u are the optimization variables, and L is a possibly non-linear function of
the optimization variables and its derivatives. The integral i,3 taken over the domain
of the optimization variables or the problem. The solution to this problem can be
found by solving the associated Euler-Lagrange equations (see a variational calculus
book such as [Courant and Hilbert, 19621 or Horn's Appendix [Horn, 19861 for more
details).

The Euler-Lagrange equations for a problem such as the one above are typically
coupled non-linear equations. Such equations are usually very difficult to solve ana-

'When the images contain singular points [Saxberg, 1989)
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lytically but can sometimes be solved numerically by converting them into discrete
equations. The conversion process involves substituting discrete approximations for
any derivatives of the optimization variables. The optimization variables may have
to be approximated by a discrete vector as well, The equations are then re-arranged
to create iterative update equations of the form

u(k + 1) = f(u(k).u(k - 1) .... ) (;3.2)

where u(k) is the value of the optimization variables for the k-th iteration.
When u has many components and when the components are updated in sequence

based on the most current estimate u, the resulting update scheme is called a Gauss-
Seidel optimization. When all of the components of u are updated simultaneously
based on a previous estimate for u. the resulting scheme is called a Gauss-Jordan
optimization. Gauss-Seidel optimization schemes have higher convergence rates and
are more robust. and are best implemented on a serial computer. Gauss-Jordan
schemes, while they have lower convergence rates and are not as robust, can be
implemented on parallel computers. Parallel computations can produce results faster.

Another way of solving the optimization problem posed above is by using direct
optimization techniques. In this case the cost function, instead of the Euler-Lagrange
equations. is discretized. Any integrations are approximated by sums and any deriva-
tives are approximated by differences. The resulting cost function is of the form

min J = (u) (3.3)
X Yt

where f(u) is a discrete approximation of L(u: u': u': ... ). Any of the wide range of
optimization algorithms that are in the literature can then be applied to this problem.
For vision problems. conjugate gradient optimization shows the most promise. The
conjugate gradient scheme doesn't require the formation of the problem Hessian (a
linear approximation to the second order derivative of the solution space at a given
point), which for an optimization problem with N variables is an N-by-N matrix. The
conjugate gradient scheme is important for vision problems since for - typical 256-by-
256 image, the shape-from-shading problem would have 2562 or 65536 optimization
variables. The Hessian for this problem would have 256" or over 4 billion elements!

Conjugate gradient optimization requires that both the cost function and its gra-
dient are computable. While an approximation to the gradient of the cost function
can be computed using finite differences, this approach is usually slow (since it re-
quires at least N function evaluations for each gradient evaluation). I use analytically
determined gradients in all the algorithms presented later in this chapter.2

One strategy that can also be used to solve non-linear problems is the method of
homotopy or the continuation method. The continuation method involves solving a

2Verified by comparing with numerical gradients.
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series of related problems of increasing difficulty that have similar solutions. Typically.
the original problem is restated to include a parameter, such as 3. which controls the
difficulty of the problem. When /3 = 1 (for instance), the problem is easy to solve

or has a analytical solution. When 3 = 0 (for instance) the original problem is
recovered. To solve the original problem, a series of problems are solved while 3
is slowly decreased. The solution of each subsequent problem is used as the initial

condition for the next problem.
One simple way to use the continuation technique is to introduce a regularization

term based on 3 that creates a convex problem when 3 = 1,

min. E E f(u) + Mg(u). (3.4)
X V

where g(u) is a regularization function that forces the problem to be convex.3 During
optimization, 0J is slowly reduced to zero, where the original problem is recovered.

The hope with the continuation method is that the solutions to the series of problems
will be close to the solution of the original problem so that they are good initial

conditions.
I use a form of the continuation based method for the algorithms in this thesis.

Since shape-from-shading problems have a well defined solution when singular points
are in the image, the smoothness terms are not needed to guarantee a solution.
The smoothness terms do. however, help convergence. During optimization. I slowly
reduce the smoothness parameter toward zero in order to avoid biasing the solution
[Horn and Brooks, 19861.

The questions of existence and uniqueness come up when working with optimiza-
tion algorithms such as those presented in this thesis. For the types of cost functions
presented in this thesis, it is clear that a solution exists; the cost functions are bounded
from below by zero. That is, the best possible value for the cost function is zero and
can be achieved only when the estimated surface images and the actual images match
exactly and when any regularization terms are set to zero.

The uniqueness of a solution depends a great deal on the surface to be estimated.
In general, both global and local minima will exist (as evidenced by the Hard Crater
problem discussed in Chapter 7). The optimization techniques discussed above only
guarantee convergence to a local minima. The global minimum may only be achieved

if the initial conditions for the optimization algorithm are close to the true solution.

3.4 Speed-up Techniques

A very well researched part of optimization theory is how to speed up the conver-

gence. For vision problems there are two promising speed up technologies: the use

-Convex problems have the property that the solution space is essentially bowl-like, with no local
minima and a single global minima which makes them very easy to solve.
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Figure 3-1: Hierarchical basis functions. Shown are the hierarchical basis nodes at each level
(circles. triangles. etc.) and the associated interpolation function extent for the front-most
nodes. The nodal basis for the 9-by-9 domain would have nodes at each pixel location and
an extent half-again as small as the level 1 extents shown.

of hierarchical basis functions, and multi-grid methods. Both methods try to speed
up the optimization problems by increasing the information transfer spatially. The
methods are based on the property of many vision algorithms that an optimization
variable within a grid of optimization variables may only be affected by its nearest
neighbors. Due to the local connectedness. many vision algorithms have diffusion-
like properties: the solution must diffuse throughout the grid. Schemes that directly
transfer information over longer distances instead thus may speed up an algorithm.

Using hierarchical basis functions transforms the optimization space as seen by
the optimization algorithm but not as seen by the vision algorithm. Basically it's like
a change of basis. Figure 3-1 shows how a 9-by-9 domain would be represented in hi-
erarchical basis. In particular, note that the nodes of the hierarchical basis propagate
information over a much larger range (due to their extended interpolation extent)
than the nodes in the nodal basis (particularly for the nodes at the upper levels).
The figure shows linear interpolation between nodes, but any interpolation scheme
can be used to build a hierarchical basis (see [Szeliski. 1990]). The problem is solved
as before but with the new variables. If necessary. the variables can be transformed
to the nodal basis when computing the cost function or gradient. Unfortunately.
all these transformations have the potential to introduce round-off errors which can
adversely affect sensitive algorithms.

The hierarchical basis functions have the most effect on the convergence and are
the easiest to implement when the grid size is 2' + 1 where n is any positive in-
teger. For such a grid it is possible to use n + 1 hierarchical basis levels. Using

It4
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Figure 3-2: Non-zero Hessian elements for a 9-by-9 image. The plot on the left shows the
non-zero Hessian elements when the nodal basis is used. The plot on the right shows the
non-zero elements when a full hierarchical basis is used.

hierarchical basis functions increases the communication between nodes in the image
array as shown in Figure 3-2. This increased communication speeds up the diffu-
sion process considerably. I have noticed a five-fold increase in convergence for the
photo-topography algorithms.

The multi-grid methods seek to propagate information over a larger range by
solving a series of problems of different size. Usually the original problem is formulated
on grids that decrease in size by a factor of two when going from one layer to the
next (see Figure 3-3). The solutions on one layer are related to solutions on the layers
above and below via interpolation or prolongation. The solutions are kept consistent
with each other via both intra-layer and inter-layer processes (see [Terzopoulos, 1984]
and [Brandt and Dinar, 1979]).

Multigrid m -thods have the potential to be much faster than the hierarchical basis
functions since most of the computation (and optimization) is done on the smaller
layers. Multigrid methods are well suited to linear problems (such as surface fitting).
but may not work for non-linear problems. The problem is that typically

Sg(u) 0 O(F", U) (3.5)

for non-linear functions g(u), and the multi-grid methods require

"E g(u)=.g(.U) (3.6) i
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Figure 3-3: Multigrid levels a

to constrain the solutions on the smaller grids so that they don't bias the solution on

the larger grid.
One type of multi-grid method that can be used for non-linear problems is the

coarse-to-fine method. In this method, the problem is solved on coarse layers first
and the solution to each layer provides the initial condition to the next finer layer
below. This method is significantly faster than just optimizing on the finest grid but
doesn't produce as much convergence speed-up as the full multi-grid method.

Like the hierarchical basis methods, the multi-grid methods work best when the
grid size is 2' + 1. However, since the multi-grid methods define a series of problems
rather than just choosing a new set of basis functions, the multi-grid methods can be
implemented easily for all grid sizes. There is some evidence, though, that grid size
reductions should be near 2 for best convergence rates [Terzopoulos. 1984].
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Chapter 4

Candidate algorithms
0

In this chapter I discuss several candidate algorithms for the photo-topography prob-
lem. Since each of the algorithms estimate the surface depth using a combination of

shape-from-shading and stereo I call them Depth From Shading and Stereo (DFSS)
algorithms. Along the way I will discuss the rationale behind each algorithm, its
strengths and weaknesses, and how it fits in with the fusion techniques discussed so
far. The performance of these algorithms on a set of synthetic test images is presented
in Chapter 5. The performance of the z-only algorithm on real images is presented
in Chapter 9.

The approach I am taking to fuse the vision algorithms is to develop a single cost
function that incorporates the problem constraints along with some regularization
terms to help direct the search path. This approach differs from many researchers'
attempts at fusion algorithms in that it closely integrates the methods rather than
building a module-based solution. I believe that this approach will create more robust
solution methods.

In effect, I pose a generalized optimization problem which can be solved many
ways. I have tried various solution methods with this research and have chosen

direct optimization via the conjugate gradient method as my preferred method. The
conjugate gradient method, like all direct optimization methods, guarantees reduction
of the cost function at each step, in contrast to the more widely used Gauss-Seidel
or Gauss-Jordan methods. The big advantage of the conjugate gradient method over
other direct optimization methods is that no Hessian needs to be computed or stored.
Computer vision algorithms have thousands of free variables which would result in a
Hessian with millions of terms if it were computed.

I have looked at four basic algorithms for the photo-topography problem.

9 The zpq and z-only algorithms estimate everything in a single global coordi-
nate system that is defined to be halfway between the two camera positions. I
refer to these algorithms as centralized. Figure 4-1 shows the flow of a typical

centralized algorithm as a tree diagram. The current estimate of the surface
height z is used to project points in the global coordinate system to points in

49
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Figure 4-1: Centralized algorithm tree.
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Figure 4-2: Decentralized algorithm tree.

each image (via perspective projection). These points won't in general land
on a pixel center so some type of interpolation (e.g., bilinear or bicubic inter-
polation) is used to determine the value of the image at the projected points.
This interpolated image F is then compared to a computed image based on the S
current estimate of the surface. The error is used to update p, q, and ultimately
z. This type of algorithm closely integrates the constraints from both shading
and stereo.

" The dual-z algorithm determines estimates of the surface for each image sepa-
rately and takes into account the stereo information via a penalty term. I refer
to this algorithm as decentralized. Figure 4-2 shows the flow of this type of
algorithm. The estimated height for each image is used to compute the cor-
responding image estimate. The errors between this estimated image and the
actual image for each camera are then used to update the associated p, q, and : 0
for each image. So far this is the same as for a normal shape-from-shading algo-
rithm. However, instead of just updating the surface height estimates directly
from the image errors, the algorithm also takes into account the differences be-
tween the two surface estimates. This type of algorithm doesn't integrate the
shading and stereo information as closely as the centralized algorithms.

" The disparity algorithm is also centralized algorithm but uses estimates of the
disparity instead of the surface depth as the fundamental variable. Figure 4-3
shows the flow for this algorithm. The current estimate of the disparity u is used
to project points in the global coordinate system to points in each image (via
perspective projection). These points won't in general land on a pixel center

0,
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Figure 4-3: Centralized algorithm tree based on disparity.

so interpolation is used to determine the brightness value in the image at the
projected points. This interpolated image F is then compared to a computed
image based on the current estimate of the surface. The error is used to update
p, q, and ultimately u. The surface height, z, is computed from u if needed.
This type of algorithm also closely integrates the constraints from both shading 0
and stereo.

The algorithms differ mostly in the representation of the surface topography. The
representation chosen for the optimization variables is very important to the per-
formance of computer vision algorithms. If the right representation is chosen then 0
the search space will be smoother and contain less local minima than if the wrong
representation is chosen.

4.1 zpq Algorithm. 0

This algorithm is based loosely on the Height and Gradient from Shading algorithm
of Horn [Horn, 19891. Following Horn's algorithm, surface height z, and the surface
gradients p, and q, are used as optimization variables. The two photo-topography
images, camera geometry, and surface reflectance functions are given as inputs to
the algorithm. The equations that govern this situation are the photo-topography
constraint equations (2.40) and the integrability constraint equations (2.39). The
integrability constraint equations are necessary to ensure that p and q are consistent
with the underlying surface z. The cost function for this algorithm is formed by
integrating the squared error introduced by the current estimates for p, q, and Z.
together with a penalty functions for departure from integrability and departure from S

smoothness,

minJ= J f E(z)( + A y) - R(")(p,q) + E(2)(x - y) - R()(p,q)

0 0 0 0 0 0i0 0 - 0
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+" Z, +: Z + q

+ A [pý7,+ p'+ q.ý+ q'I Idxdy. (4.1)V Y

This cost function allows the normal vector components p and q freedom to try to
match the input images without requiring integrability. The penalty functions are
then used to bias p and q toward solutions that are integrable and smooth. Using soft
constraints like those above provides for more degrees of freedom which, it is hoped.
will result in fewer local minima. The disadvantages of these extra degrees of freedom
are a non-exact solution (since z will not be exactly consistent with p and q). and
slower convergence. 0

The cost function above is continuous and must be discretized before it can be
optimized (solved). The discretization process is an approximation process. The idea
is to approximate the integral above by some function of a finite (usually small) set of
variables. Researchers typically use either a series representation of the integrand or

a sampled version of the integrand. Examples of the first representation are Fourier 0
series and finite element methods. Examples of the second representation are finite
difference methods.

I have used finite difference methods exclusively for the research presented in this
thesis. The main reason for this is that the images (E(')(x, y) above) are provided in
digital form. In these images, each pixel represents, in some sense, a weighted average 0
of the brightness falling within the sensitive area of the corresponding photosensor.
Thus each image is actually an array of brightness values. Given this fact it makes
sense to approximate the values for p, q, and z as arrays of gradient components or
surface depth, as the case may be. Choosing this digital representation results in a
problem of the finite difference class. 0

Suppose p, q, and z are represented as arrays, as discussed above. Suppose also
that the continuous derivatives of the underlying functions (such as z) are approxi-
mated by finite differences, then the cost function can be approximated by the discrete
sum,

mrin J = 1 F(l)(.T + L'"'y) - R(1) (p,q9)P'q'Z 2MNE2 X (VEV + (p2z

+ (F(2)( Lb -_ 2)(p,q))

(4.2

+ A [p''+ p2 + q.2+ 2]] (4.2)

where V is the discrete domain of the underlying variables in the global coordinate

n0
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Figure 4-4: Relative sizes of the p, q, and z arrays in comparison to the image arrays for
the co-grid representation.

system, M and N are the row and column dimensions of the discrete domain, and f is

the grid spacing (assumed to the same in both the x and y directions). The F(')(x, y)
are interpolated from the input images E()(x, y) using linear interpolation,

F(')(z ± y) = E')(±, y) + (x+• -)[E(')(t + l,y)-E(')(±,y)J (4.3)

where
floor(x ± -). (4.4)

The floor(x) function returns the greatest integer that is smaller than x. Note that
Equation 4.3 assumes that x is sampled on a unity-spaced grid.

4.1.1 Co-grid Implementation 0

Two approaches have been taken to implement this cost function. In the first ap-
proach, the p and q arrays are the same size as the image arrays and the z array is
one pixel larger in both the column and row directions. That is, the p and q functions
are sampled on the co-grid of the function z (see Figure 4-4). This approach uses
face-centered surface derivatives that are valid in the center of each 2-by-2 "face- •

formed by the z grid. In this approach, the x- and y-derivatives are approximated by

L; a I i | II i II lia i am ... ... - .... ... ..... ... ' '0
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computational molecules of the form,

01 =F1 IOH,(4.5)

and 0

"G = E F10 (4.6)

(4.7)

which have low approximation error. The diamond operator o is similar to (but
different from) two dimensional convolution.' In addition, this approach requires
that z be sampled on the co-grid when computing the terms in the cost function that
contain z. Based on a bilinear approximation, z can be sampled using 0

The resulting algorithm performs as well as the algorithm to be described next but
has the disadvantage that the hierarchical basis functions cannot be used to full
advantage since not all the p. q, and z arrays can be of the size 2'" + 1. Recall that
the hierarchical basis functions are easiest to implement and provide for optimum
communication between pixels in the array when the row and column dimensions are 0
of size 2' + 1 for some n. In addition, multi-grid methods also cannot be used when
the variable arrays are of different sizes.

4.1.2 Matched-grid Implementation 0

In the second approach, p, q, and z are chosen to all be the same size as the image
arrays. In such a representation, all the functions are sampled on the same grid (see
Figure 4-5) which is why this approach is called the matched-grid representation. This
approach uses vertex-centered surface derivatives that are valid at each vertex of the

' Suppose h(i, j) is a computational molecule (as an array), then the diamond operation ix defined
as

(h o z)(i, j) = .Z(a- M + k, j - N + m)h(k,,n) (4.8)
& ,m

where M is the row dimension of h and N is the row dimension of h. The definition differs from 0
two-dimensional convolution in that h is not "flipped".

II i III III IIII I Il ll . . ... '• •
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Figure 4-5: Relative sizes of the p, q, and z arrays in comparison to the image arrays for
the matched-grid representation.

- grid. Computational molecules that exemplify this approximation are,

(*)=X F ii ý1M F o{) (4.10)

which have higher approximation error than their face-centered counterparts. In
practice, the algorithm based on this approach has nearly the same performance as
the algorithm based on the face-centered approach. Since p and q are the same size
as z. some type of approximation must be made at the array edgeb (boundaries).
I have chosen to extrapolate the estimates using a bicubic interpolant and use this
extrapolated version of each estimate in subsequent calculations (see Section A.2).
Using the extrapolated estimate is similar to using natural boundary conditions in
variational calculus methods, and allows for easy computation of the gradient.

The performance of the matched-grid zpq algorithm on four test image sets is
presented in Chapter 5. This algorithm gets stuck in a local minimum on the hard
crater images (as do all of the algorithms to be presented), but does reasonable well
on the other test images (except for the mountain images). As a whole, this algorithm
produces surfaces that are too smooth and takes longer to converge than the other
algorithms.

/0

0 0 0 0S 0 0
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Like all the algorithms to be presented. this algorithm is run using a exponentially
changing smoothness parameter X, and integrability parameter u (if it exists). A
large initial smoothness parameter helps to make the search space more bowl-like
at the expense of meeting the photo-topography constraints. When the smoothness
parameter is small, the photo-topography constraints are met at the expense of a
possibly bumpy surface. A small initial integrability parameter allows the surface
gradient components p and q to wander far from integrability in order to create image
estimates that match the input images. A large integrability parameter. requires that
these image estimates be created so that p and q are nearly integrable.

While it is not required that the optimization parameters be ramped in this fash-
ion, I have found that doing so allows for faster convergence over optimizing with the
parameters fixed at their final values. 0

4.2 z-only Algorithm

This next cost function is similar to the zpq cost function except that it uses hard
integrability constraints instead of soft constraints. With hard constraints we are
guaranteed that any solutions obtained will be feasible. The trade-off is that the
algorithm will have less degrees of freedom to work with and may be more susceptible
to local minima.

For this cost function, the depth map z is the only optimization variable thus the *
resulting algorithm is called the z-only algorithm. The surface gradient components
p and q are computed directly from the depth map. As before. the photo-topography
images. camera geometry, and surface reflectance functions are inputs to the algo-
rithm. The constraint equations again come from the photo-topography constraints
and integrability constraints. The cost function is formed by integrating the squared 0
photo-topography error introduced by the current estimate for z, together with a
penalty function for departure from smoothness,

The penalty function is mainly used to guide the solution towards the minimum.
In practice, the smoothness weighting parameter. A, is slowly reduced toward zero as
the algorithm converges. 0

mini I if E(1) (x + 2z,y) -- R(1) (p, 9) + (E(2)( Lb •-zy) - R(') (p, q)2

+ A [ .2.,+2z, 2]Id y (4.12)

The smoothness term is based on what is called the second variation. It is equivalent
to p, + p2 + 92 + q2 when z,, fp/zo and z, ;:z fq/zo where z0 is the nominal depth. 2

2The approximations are valid when the field of view is small, the image is centered around the 0
camera's principal paint, and the depth of field relative to the nominal depth is small.

0

0 0 0 • • • 0 0 0 -
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0

Image AryX)

Figure 4-6: Relative size of the z array in comparison to the image arrays for the expanded
boundary implementation.

Using an array for '!, the discrete approximation of this cost function is.

min J = 1M~ Ez{ (F'(l)( + Lb )- R(l)(p, q)) 2

algorithm.

"/ (F.... . -/ R •

" -'+2_,+Z"---4.13)

Figue 4-6: y)larie sintroae d fro the ry inco pursnto h images array ) s for the eprneviou

4.2.1 Expanded Boundary Implementation 0

Two approaches have been taken to implement this cost function. In the first ap-
proach, the z array is 1 pixel larger than the image array in all directions (see Fig-
ure 4-6). The normal vector components are estimated on the inner grid which is the
same size as the image arrays. In fact, the outer depth estimates are only used when0
computing p and q. This approach is very easy to implement but cannot be used with
a multi-grid scheme since the z array is a different size than the image arrays. The
approach can, however, take full advantage of hierarchical basis functions since : can
be of the size 2' + 1. The implementation uses the vertex-centered derivatives dis-
cussed in the previous algorithm. The second-order derivatives are approximated by

S- / .0

10F0 0(x0 0 z 0) -0R0 0P q
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the following computational molecules which are also vertex-centered approximations.

Fil n-2 n

n2 E [lI ] o z. (4.14)

zx = D(4.1)
1 R 1-rmr1ZY= - j -~ 0i ~Z' (4.16)

(4.17)

The algorithm based on this approach has nearly the same performance as the algo-
rithm based on the approach to be presented next.

4.2.2 Matched Grid Implementation

In the second approach, z is chosen to be the same size as the image arrays thus
facilitating a multi-grid implementation. The surface normal components. p and q.
are computed on the boundary using the boundary extrapolation technique discussed
for the zpq algorithm. This approach also uses vertex-centered approximations for
the derivatives.

The performance of the matched-grid z-only algorithm on the four test images
is presented in Chapter 5. This alg,-ithm also gets stuck in the local minimum for
the hard crater images. The performance on the easy crater images and the others
is very good however. In fact. this algorithm has the best performance of the all the
algorithms to be presented. An important thing to note in the performance figures
is that the algorithm converges to a reasonable surface quite quickly. usually in the
first 100 iterations or so. The performance figures are shown for 1200 iterations so
that it is possible to see the convergence characteristics in the long term.

0 0 0 0 0 0 0 0
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4.3 Dual-z Algorithm

This cost function uses a totally different variable representation. In this case the
depth map is represented by two arrays. z(') and z(2) which are estimated based
on the images EV') and E(2) respectively. This algorithm is referred to as the dual--
algorithm. The two depth arrays are kept consistent with one another using a penalty
function that enforces the stereo constraint equations,

z (1) (Xl) Y(1)) = Z(2) (X~l) _ -L , ,y ()),

Z(I) (4.18)
z (2)(x(2) y( 2)) = z( 1 )(x(2) + fLb Y (2))

Z(2),

where (x(l). y()) are the coordinates of points in the first image and (X(2 ), y( 2 )) are the
coordinates of points in the second image. These equations require that the depth

estimate from one image be the same as the depth estimate at the corresponding
projected point3 in the other image. Each depth map is a constrained shape-from-

shading solution for the corresponding image. This algorithm has a totally different

search space than any of the previous algorithms.
For this cost function. the depth maps z(') are the optimization variables and

the surface gradients p(') and q(') are computed directly from the z(). The photo-
topography images, camera geometry, and the surface reflectance functions are inputs.
The constraints come from the photo-topography constraints, the integrability con-
straints. and the stereo constraints. The cost function is formed by integrating the
squared shading error (in the spirit of shape-from-shading) introduced by the current
estimates of ?), together with penalty functions for departure from smoothness. and
stereo error.

min J= I (E(1)(P(), y(1)) - R() (p('), q(1))) 2 + A(V 2
2() )2

+ _ "l-f " y(1)) dx(l) dy- ()

+ J{(E ()(.r(2), Y (2)) - R (2) (P(2). q (2))) 2 + A(V,2Z(2 ))221

+ ( (x(2 + fb y( 2) Z(2((1) y(2))1) (2+ p .{) ()+ U "(2) -- ~ xldx 2)dy '4 .

where
V 2z = z., + z 111. (4.20)

The smoothness penalty function for this cost function is based on the squared Lapla-

3 Using perspective projection.
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cian of z(i). The squared Laplacian has roughly the same characteristics as the second
variation [Grimson, 19791, but is much quicker to compute (since it only involves one
convolution).

The cost function contains two shape-from-shading cost functions and the stereo
penalty function. This cost function is not as closely-coupled as the other two cost
functions I have described so far. In particular the stereo constraints are added on
like an addendum to the shape-from-shading cost function. The stereo constraints, in
effect, pass their constraints up to the shape from shading parts of the algorithm. I
think of this algorithm as trying to fit together two rubber mountains. The mountains
can be moved back and forth, and molded to find the best fit. Since the algorithm
is not as integrated, we would expect that images that don't contain strong shading
information will be difficult for this algorithm to solve.

Using z(l) and P) arrays as before, the cost function can be discretized to become.

minJ= 1 {(E(l)(xl), Y(l)) - R~')(p~') q(1))) 2 + A(V2Z(I)) 2

- ,z (2) 2A A)2  )-

(1) z Xlllx ), y(1)) _- j12) (X(l) _ fLb ,y(l))) 2

1

2MN 2  Y { (E( )(x(.), Y(2 )) - R(2 )(P(2), q(2))) 2 + A(V 2z( 2 ))2

+ Z(2) £' + )-' y(21) (4.21)

The stereo penalty functions include terms involving _(1) and ;(2) which are inter-
polated versions of z(l) and z(2). Bicubic interpolation is used [Keys, 1981]. Using
this notation, ,(')(x, y) is the value of z(') evaluated at the point (x, y) using bicubic
interpolation. Vertex-centered derivative approximations were used with this cost
function, and the Laplacian is approximated using the computationa: molecule.

4~ 2]J]LW z (4.22)

Both the expanded boundary approach and the matched-grid approach discussed
in the previous section were taken to implement this cost function. Several variations
of the basic implementation were tried with this cost function. For example. in
addition to the smoothness term based on the squared Laplacian, algorithms were

S S S 0 0 S 0 0
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implemented where the smoothness term was based on the second variation.

minJ, = 1 1 {...+ + )2(+ )2 + (:1J )21 +

+ M N• { "+ (C2 +--° "(2) >2 + )2 • _(2) )2] ... (4.23).(1):(2 2(z(2)X&

1 (2), f [()E.())

Another alternate implementation used face-centered derivatives instead of vertex-
centered derivatives. All of these algorithms have performance very similar to each
other, and they suggest that as long as a reasonable derivative approximation or
smoothness criteria is used, it doesn't reaily matter which one is chosen. Any reason-
able approximation or smoothness criteria is as good as any other. In light of this. it
makes sense to choose the approximations or smoothness criteria that are the easiest
and the fasted to compute, or that have the best numerical properties.

The performance of this algorithm on four test images is presented in Chapter 5.
Like the previous algorithm, this algorithm also has problems with the hard crater
images but does well on the other images. Unfortunately, the results of this algorithm
are two depth maps which represent the depths as seen from the right and left cameras.
These maps will not, in general, register exactly with one another. To create a
single depth map from these maps requires some type of averaging. This is a major
disadvantage.

To address this disadvantage, an algorithm was implemented that had three depth
maps P), z('), and z, where z is the depth map as seen from the global coordinate
system. In all other ways the algorithm was the same as the dual-z algorithm. The
performance of the algorithm was very similar to the performance of the above al-
gorithm yet it created a central depth map. It is not shown here since it was even
slower than the dual-z algorithm.

The combination of two depth maps and need for bicubic interpolation, caused
the dual-z algorithm to be the slowest to compute. The figures in Chapter 5 show
the number of function evaluations and not the computation time. In practice this
algorithm was 3-5 times slower than the :-only algorithm.

4.4 Disparity Map Algorithm

Another popular representation for depth that shows up often in the vision literature

is the disparity map. The disparity is the relative offset of a point in one image with
respect to the corresponding point in the other image. Using the notation we have
used so far, the disparity can be defined as.

U = fb (4.24)

0 0 0 0 0 0 0 0
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where u is the disparity. Using this definition of disparity, the surface gradient com-
ponents are computed using,

fu,
mUx - U

fu•, (4.25)
q= fu

yuI - U

The photo-topography constraint equations can also be re-written using disparity to
become,

E(')(x + u, y) = R(1)(p, q),

E 2)(z - u, y) = R(2)(p, q). (4.26)

Suppose we adopt the centralized approach for this cost function and have the dis-
parity map u be the optimization variables. The surface gradients p and q are com-
puted directly from u. The photo-topography images, camera geometry. and surface
reflectance functions are inputs. The cost function for this case is formed by integrat-
ing the squared photo-topography error (based on disparity) together with a penalty
function for departure from smoothness,

1

min J f f{ (E(' (x + u,y) - '"(p,•q)) 2 + (E(')(x - u,y)- R ( ))-

+ A [u:X + 2,, 11 +YI]dx dy. (4.27)

where the surface gradient components are given by Equation 4.25. The smoothness
term is based on the second variation of u. The main difference between this cost
function and the others I have presented is the smoothness term (it is now based on
disparity instead of depth). The numerical properties will also be somewhat different
since the hierarchical basis functions will be over disparity instead of depth.

Disparity is typically used in vision algorithms for two reasons. First the disparity-
based algorithms usually have fewer division operations which can improve perfor-
mance, and second the disparity has a much smaller dynamic range which can con-
tribute to better numerical properties. Unfortunately, since the photo-topography
problem requires the use of perspective projection, the first reason doesn't hold for
my algorithms. The culprits are the surface gradient equations (Equations 4.25). As
for the second reason, the disparity-based DFSS algorithm has pretty much the same
numerical properties as the other DFSS algorithms. However, using disparity, instead
of depth, changes the solution space the optimization is performed in.

Representing u as an array, the cost function can be discretized to obtain,

minJ = I._NF(,) , ( + u,y) - R()(p,,q)2 + (F(2 (T - U,,Y) R('")(p,,q))2

U TM_ [uN, 2 . E

+ 2[u.2.+ 2u + ti} (4.28)
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The F(')(x - u, y) are linearly interpolated from the input images E(')(x. y) using

disparity,

F()( ± u,y) = E() (i,y) + (x ± u - i) [E(P)(i + l.y) - E() (i.y)] (4.29)

where
S= floor(x ± u). (4.30)

Only the matched-grid approach was used to implement this cost function. In

this case, u is chosen to be the same size as the image arrays. The derivatives

are approximated using vertex-centered computational molecules as for the previous
algorithms.

The performance of this algorithm on four test images is presented in Chapter ..
This algorithm, like all the previous algorithms, gets stuck in a local minimum for
the hard crater images. The algorithm, however, performs well on the other images.

An interesting observation can be made about the performance of this algorithm on

the mountain images. The algorithm over-estimates the mountain height while the

:-only algorithm under-estimates it. This is clear indication that the search space for

the disparity-based algorithm is fundamentally different from the search space for the

--only algorithm. Unfortunately, the solution space is not different enough to avoid

falling into the local minimum of the hard crater image.

0II 0li l 0llli 0l 0n0n00
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Chapter 5

Test Results

It is important when developing a new algorithm to be able to test its performance.
For computer vision algorithms, that means that it must be possible to compare the
estimated surface with the actual surface. The only way to do this with complete
confidence in the results is to create synthetic images from a known surface topogra- 0
phy, run the algorithm on these images, and compare the estimate with the known
topography. Only after it is shown that the algorithm works on the synthetic im-
ages, can we be confident that the surface estimates for actual planet images will be
accurate.

I have created four image pairs as test images based on three surface topologies. 0

" Easy Crater Images. This set of images is based on a crater on a flat plane.
The light sources are oblique which results in images that prove to be easy for
the DFSS algorithms to interpret.

" Hill Images. This set of images is based on a fractally-generated set of rolling 0

hills. The light sources are oblique. These images are interpreted correctly for
most of the DFSS algorithms but require more iterations of each algorithm since
they are more complicated than the crater images.

" Mountain Images. This set of images is based on a fractally-g,-nerated moun- 0
tainous terrain. The light sources are oblique and the camera baseline is much
smaller. This set of images poses a challenge to the DFSS algorithms due to
the steep terrain and reduced baseline.

"* Hard Crater Images. This set of images is also based on a crater on a flat 0
plane. The light sources are almost directly behind the camera resulting in a
set images that prove to be difficult for the DFSS algorithms.

The calibration parameters for the test images are summarized in Table 5-1. The
table lists values for the baseline distance b, camera focal distance f, nominal depth(1) (1) (2) (2)
zo, and light source vector components ps qs , PS , qs . The focal distance and

65
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b f z0  Az/ZO Au PS qS) PS2 q9
Easy crater 500 -2730 -997 0.0038 2.62 0.2 -0.5 -0.3 0.1
Hills 500 -12222 -1000 0.0011 3.41 1.0 -1.0 0.3 0.1
Mountain 100 -2292 -996 0.0153 1.77 0.5 0.5 -0.5 0.0
Hard crater 500 -2750 -997 0.0038 2.62 0.1 0.1 -0.1 0.1

Table 5-1: Camera geometry. 0

nominal depth are negative to be consistent with a right handed coordinate system.
The baseline distance b and depth z have the same units (say miles), while the camera
focal distance, pixel spacing and the light source components are based on camera
units (say millimeters). The table also lists values for relative surface height Az/0o 0

and disparity Au. These two parameters indicate the difficulty of the problem. Small
values of either indicate a hard problem. Note the units for Au are in pixels for a
65-by-65 problem, and f is computed so that the pixel spacing is 1 (millimeter).

All of the test images are noise-free so that the best performance of each algorithm
can be tested. The performance of the z-only algorithm on images with noise in 0

presented in Chapter 7. The performance figures for each test case include mesh plots
of the estimated surface at several points during optimization as well as estimated
images based on the final surface. The mesh plots are of a 33-by-33 smoothed (to
avoid aliasing) and subsampled version of the 65-by-65 estimated surface. The lower
resolution mesh plots are used to avoid printing problems. 0

The performance figures also show the number of function evaluations (iterations)
computed by each algorithm during convergence. The number of conjugate gradient
updates taken is between one-half to one-third of the number of function evaluations
since 2-3 function evaluations are needed to perform each update step. All of the
algorithms use hierarchical basis functions to enhance convergence. 0

5.1 Easy Crater Images

The crater on a flat plane is very simple surface and thus serves as a good test 0
surface.' The camera and light source geometry as well as the true surface, light
source contour plots and resulting images are shown in Figure 5-1. As shown in the
figure. the baseline distance between the cameras is about half the distance to the

surface and the light source (i.e., the sun) positions for the two images differ greatly
from each other. As a result, this set of images has strong shading information which 0
is very easy for the DFSS algorithms to take advantage of. The effects of the lighting
can be seen in the contour plots of the reflectance map. The reflectance contours
are separated enough in gradient space (p-q space) so that brightness values from

'Information on how to generate this surface can be found in Appendix C. 0
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Figure 5-1: Test images of crater on fiat plane (easy case). Shown are the camera geometry
as projected into the zz- and yz-planes, the true surface as a mesh plot, reflectance function
contours for the two light source positions, and the left and right synthetic noise-free images.
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one image can easily constraint the possible set of feasible gradient directions.2 The
images are 65-by-65 pixels in size and are noise free. 0

The Figures 5-2-5-5 show the results of applying the various DFSS algorithms
to this test case. All four algorithms can correctly interpret these images but the
:-only algorithm performs best. The figures show that the estimated images in this
case very closely resemble the true images and the surface estimates are very good
except in the lower left corner of the surface (see the mesh plots). With the lighting 0

conditions chosen for these test images, this small anomaly has little effect on the
estimated images. It is interesting to note that the anomaly shows up for all four
algorithms.

The most interesting thing about this test case is the rate of convergence that is
obtained with the z-only, dual-z, and disparity algorithms. In those cases. a pretty 0

good estimate is obtained after only 50 function evaluations! This represents only
about 20 updates since more than one function evaluation is necessary per update
when using conjugate gradient optimization.

2That is. there are regions in the gradient space where a given brightness value from one image 0
strongly constrains the gradient direction there.

li
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Figure 5-2: Performance of the zpq algorithm on the easy crater images. The up-
per-left graph shows the cost function (solid line) and RMS error of the estimated Surface
(dashed-line) plotted against the number of function evaluations. The upper-right graph
shows the history of the A (solid line) and ju (dashed-line) cost function parameters. Also
shown are images based on the estimated surface and mesh plots of the surface at different
points during optimization.
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Figure 5-3: Performance of the z-only algorithm on the easy crater images. The up-
per-left graph shows the cost function (solid line) and RMS error of the estimated surface
(dashed-line) plotted against the number of function evaluations. The upper-right graph
shows the history of the A cost function parameter. Also shown are images based on the0
estimated surface and mesh plots of the surface at different points during optimization.
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(dashed-line) plotted against the number of function evaluations. The upper-right graph

shows the history of the \ (solid line) and p (dashed-line) cost function parameters. Also
shown are images based on the estimated surfaces and mesh plots of the surfaces at different

points during optimization.
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Figure 5-5: Performance of the disparity-based algorithm on the easy crater images. Tbe
upper-left graph shows the cost function (solid line) and RMS error of the estimated surface
(dashed-line) plotted against the number of function evaluations. The lipper-right graph
shows the history of the X cost function parameter. Also shown are images based on the
estimated aiurface and mesh plots of the surface at different points during optimization.
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5.2 Hf11 Images

The second set of images is of an undulating surface similar to eroded hills and was
generated using a fractal technique. 3 Figure 5-6 shows the camera geometry. true
surface, reflectance contours. and test images for this surface. This set of images is
more representative of the type of terrain the DFSS algorithms are likely to encounter.
As shown in the figure, the left camera is directly over the surface and the right camera
views the surface obliquely. The light sources are separated. as for the easy crater

image. resulting in images with strong shading information. I find the relatively low
65-by-65 resolution of these images hard to interpret visually (unlike the crater images
which are easy to interpret). The DFSS algorithms, however, perform well with these
images.

The Figures 5-7-5-10 show the results of applying the various DFSS algorithms
to this test case. All four algorithms work reasonably well with these images. but
the z-only algorithm performs best. Due to the complexity of the surface, this set of
images requires more iterations of each algorithm to obtain a satisfactory estimate of
the surface than the easy crater images. The figures show that the :-only algorithm
performs best. it even obtains a very good estimate after 50 iterations! The con-
vergence is a little slower for the dual-: and disparity algorithms; they obtain good

estimates after about 200 iterations. The zpq algorithm is the slowest and requires

about 600 iterations to obtain a satisfactory solution. The estimated images in all

cases match very well the true images shown in Figure 5-6.

31nformation on how to generate this surface can be found in Appendix C.
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Figure 5-6: Test images of hili. Shown are the camnera geometry as projected into the .rz-
and yz-planes, the true surface as a mesh plot, reflectance function contours for the two
light source positions, and the left and right synthetic noise-free images.
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Figure 5- 0: Performance of the zpq algorithm on the hill images. The upper-left graph shows
the cost function (solid line) and RMS error of the estimated surface (dashed-line) plotted
against the number of function evaluations. The upper-right graph shows the history of the
A (solid line) and p (dashed-line) cost function parameters. Also shown are images based on
the estimated surface and mesh plots of the surface at different points during optimization.
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Figure 5-8: Performance of the z-only algorithm on the hill images. The upper-left graph
shows the cost function (solid line) and RMS error of the estimated surface (dashed-line)
plotted against the number of function evaluations. The upper-right graph shows the history
of the A cost function parameter. Also shown axe images based on the estimated surface
and mesh plots of the surface at different points during optimization.



5.2. HILL IMAGES 7

CoavuSence Hiaoey La-da & Mu Prmue Homy16° - _ - - 10,

030 1010 10,E

0 500 3000 1500 0 500 1000 1500

Ela3me mqu at Antom 1201

Estnea sfa• m at moik 51 Emed snules at aaui 201

Esus~ad ionwf at tuoma 600 Es5mamW wfa at •raws 1201

Figure 5-9: Performance of the dual-z algorithm on the hill images. The upper-left graph
shows the cost function (solid line) and RMS error of the estimated surface (dashed-line)
plotted against the number of function evaluations. The upper-right graph shows the history
of the A (solid line) and p (dashed-line) cost function parameters. Also shown are images
based on the estimated surfaces and mesh plots of the surfaces at different points during
optimization.
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Figure 5-10: Performance of the disparity-based algorithm on the hill images. The up-
per-left graph shows the cost function (solid line) and RMS error of the estimated surface
(dashed-line) plotted against the number of function evaluations. The upper-right graph
shows the history of the A cost function parameter. Also shown are images based on the
estimated surface and mesh plots of the surface at different points during optimization.
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5.3 Mountain Images

The third set of images is of a highly mountainous surface and was created to show
the performance of the algorithms on steep terrain. The steep terrain requires that
the baseline distance from the cameras be shortened so that all the surface points
are visible from both cameras (see Figure 5-11). Thus this set of images can be
used to test the performance of the algorithms when the stereo baseline is small.
As shown in the figure, the light source positions for this set of images are widely
separated and generate deep shadows on this steep terrain. The reflectance maps
are flat within a shadow so no helpful gradient is available to the algorithms. In
addition. knowledge that a particular pixel is in shadow only constrains the set of
possible gradient directions to a sub-plane of gradient space. Thus, within a shadow
region. much more influence is given to the brightness values from the other image.
This combination of effects results in slower convergence.

The Figures 5-12-5-15 show the results of applying the various DFSS algorithms to
this test case. The z-only, dual-z, and disparity algorithms work reasonably well with
these images, but the z-only algorithm performs best. The zqq algorithm has trouble
with this test case. Due to the complexity of this test case, the algorithms require
many more iterations to achieve a satisfactory solution. The Z-only and disparity
algorithms are able to obtain good solutions after about 600 iterations, while 1400
iterations are not enough for the zpq. The dual-- algorithm obtains a reasonable
estimate at about 1200 iterations.
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Figure 5-11: Test images of mountain. Shown are the camera geometry as projected into
the xz- and yz-planes, the true surface as a mesh plot, reflectance function contours for the
two light source positions, and the left and right synthetic noise-free images.
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Figure 5-12: Performance of the zpq algorithm on the mountain images. The up-
per-left graph shows the cost function (solid line) and RMS error of the estimated surface
(dashed-line) plotted against the number of function evaluations. The upper-right graph
shows the history of the A~ (solid line) and ps (dashed-line) cost function parameters. Also
shown are images based on the estimated surface and mesh plots of the surface at different
points during optimization.
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Figure 5-13: Performance of the z-only algorithm on the mountain images. The up-
per-left graph shows the cost function (solid line) and RMS error of the estimated surface
(dashed-line) plotted against the number of function evaluations. The upper-right graph
shows the history of the % cost function parameter. Also shown are images based on the
estimated surface and mesh plots of the surface at different points during optimization.
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Figure 5-14: Performance of the dual-z algorithm on the mountain images. The up-
per-left graph shows the cost function (solid line) and RMS error of the estimated surface
(dashed-line) plotted against the number of function evaluations. The upper-right graph
shows the history of the A (solid line) and u (dashed-line) cost function parameters. Also
shown are images based on the estimated surfaces and mesh plots of the surfaces at different
points during optimization.
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Figure 5-15: Performance of the disparity-based algorithm on the mountain images. The
upper-left graph shows the cost function (solid line) and R.MS error of the estimated surface
(dashed-line) plotted against the number ir function evaluations. The upper-right graph
shows the history of the A cost function parameter. Also shown a~re images based on the
estimated surface and mesh plots of the surface at different points during optimization.
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5.4 Hard Crater Images

Like the easy crater images presented earlier, this set of images is also based on the
crater on a flat plane. However in this case. the light source positions are nearly the
same and are almost dire-tly behind the cameras. The resulting images are very bright
and look very much the same except for slight differences in shading (see Figure 5-
16). The reflectance maps for this case are nearly co-incident which contributes to 0
a surface orientation ambiguity. This set of images represents a worst case for the
DFSS algorithms since the shading information in the images is weak and the range
of brightness values is small. However, they also have strong stereo correspondence
information, which unfortunately is not readily utilized by the DFSS algorithms. The
test images are 63-by-65 pixels in size and are noise free. 0

The Figures 5-17-5-20 show the results of applying the various DFSS algorithms
to this test case. All four algorithms get stuck in a local minimum. The figures
show that the estimated images resemble the true images of Figure 5-16 even though
the estimated surface doesn't match the actual surface. The problem is that the
algorithms incorrectly interpret the surface as concave when it is actually convex (see 0
also the shape-from-shading results in Chapter 6). Even though the stereo information
in these test images can be used to correctly determine the orientation of the surface.
the DFSS algorithms rely very heavily on the shading information.

The surface orientation ambiguity is a result of having both light sources directly
behind the cameras. All the test images that I have tried that have this light source 0
geometry cause the algorithms to fail.

The results shown in the figures are based on algorithms that employ the hier-
archical basis functions. When I run the algorithms on the hard crater test images
without using the hierarchical basis functions, the algorithms can correctly interpret
the images. The convergence is significantly slower, however. Based on several runs I 0
have made, it appears that the explanation for this behavior is that the hierarchical
basis functions lead the algorithm down a particular path that ends up in the local
minima. When the nodal basis is used, the algorithm goes down a different path that
is able to bypass the local minimum (just barely).

This problem seems to be sensitive to initial condition. In fact, when I start the 0
algorithms from an initial condition close to the true surface, they do converge to the
true solution as expected.4

This test case has been the impetus for developing a plethora of algorithms, only
a few of which are presented in this thesis. I had hoped that developing an algorithm
with a totally different search space would result in one that could solve this problem. 0
Unfortunately, all the algorithms I have developed have gotten stuck in the same local
minima shown in the figures. The other test cases show that the algorithms perform
very well when different lighting is used where at least one lighting condition is oblique.

0
4Of course, they only achieve the exact solution when the smoothness parameters are set to zero.
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Figure 5-16: Test images of crater on fliat plane (hard case). Shown are the camera geometry

as projected into the zz- and yz-planes, the true surface as a mesh plot, reflectance function

contours for the two light source positions, and the left and right synthetic noise-free images.
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Figure 5-17: Performance of the zpq algorithm on the hard crater images. The up-
per-left graph shows the cost function (solid line) and RMS error of the estimatc I surface
(dashed-line) plotted against the number of function evaluations. The upper-right graph
shows the history of the A (solid line) and us (dashed-line) cost function parameters. Also
shown are images based on the estimated surface and mesh plots of the surface at different
points during optimization.
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Figure 5-18: Performance of the z-only algorithm on the hard crater images. The up-
per-left graph shows the cost function (solid line) and RMS error of the estimated surface
(dashed-line) plotted against the number of function evaluations. The upper-right graph
shows the history of the A cost function parameter. Also shown are images based on the
estimated surface and mesh plots of the surface at different points during optimization.
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Figure 5-19: Performance of the dual-z algorithm on the hard crater images. The up-
per-left graph shows the cost function (solid line) and RMS error of the estimated surface
(dashed-line) plotted against the number of function evaluations. The upper-right graph
shows the history of the A (solid line) and p (dashed-line) cost function parameters. Also
shown are images based on the estimated surfaces and mesh plots of the surfaces at different
points during optimization.
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Figure 5-20: Performance of the disparity-based algorithm on the hard crater images. The
upper-left graph shows the cost function (solid line) and RMS error of the estimated surface
(dashed-line) plotted against the number of function evaluations. The upper-right graph
shows the history of the A cost function parameter. Also shown are images based on the
estimated surface and mesh plots of the surface at different points during optimization.
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Absolute Error
Algorithm Easy Crater Hill Mountain Hard Crater

dual-z 1.2991 0.2274 0.8774 2.4241
zpq 0.2130 0.0247 2.7494 1.5933
disparity 0.1668 0.0251 0.8383 0.9241
z-only 0.1728 0.0247 0.7799 1.0716

Relative Error

Algorithm Easy Crater Hill Mountain Hard Crater

dual-z 0.3614 0.0968 0.8436 1.0078
zpq 0.1678 0.0205 2.5715 1.5379
disparity 0.1663 0.0176 0.7193 0.9240
z-only 0.1721 0.0175 0.7177 1.0076

Table 5-2: Absolute and relative surface estimation error by algorithm and test case (1200
iterations).

5.5 Summary

A summary of running the algorithms on the test images is shown in Table 5-2 and
Figure 5-21. The table shows the relative and absolute error between the true and
estimated surface at the last iteration. The absolute error is computed using the
formula

abs 1

while the relative error is computed using

Jrel = - Z - i) - (Z" - (5.2)

where z' is the true surface height and i is the average of z. The figure shows
the absolute error normalized by the surface depth change of the true surface (i.e.,

- zj,)). The figure can be used to interpret the error as a fraction of the total
surface depth change. All the algorithms were run with 6 hierarchical basis levels
which is one less than the largest number of levels that can be used with 65-bv-65
images. Using this number of hierarchical bases sped up the convergence of each
algorithm by a factor of 3-5.

It is clear that all of the algorithms had problems with the hard crater images.
Each one got caught in the local minimum. The reason for this can be seen in the
reflectance contours of Figure 5-16. For a given brightness level (i.e., along one of
the contours), there are two viable solutions with different surface orientations. The
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Figure 5-21: Absolute surface estimation error scaled by the true surface depth change. The
depth change is shown in parentheses.

local minimum has a orientation in the "dipped" region that is a viable but incorrect
orientation, and the stereo information is not strong enough to pull it out of the local
minimum.

The hard crater images have been the driving force behind much of this research
and are one of the reasons that so many alternate algorithms were implemented.
As each algorithm was created and implemented it was hoped that the new search
space would allow the correct interpretation of the hard crater images. Alas. every
algorithm I have tried has been caught in the local minimum.

The only way the algorithms can correctly interpret the hard crater images is to
perform the optimization with no hierarchical basis levels. The convergence is very

slow but the solution is correct. I hesitate to recommend that all runs be performed
using the nodal basis, however, since the performance hit is huge and there is no
guarantee that the true solution will be found. Consider the fact that the test images
are small and that more normal size images are of the order 513-by-513. One function
evaluation with these images will take 64 times as long to compute as the test images.
In addition, since all of the algorithms are diffusion-type algorithms, we could expect

an 8 times increase in the number of function evaluations to obtain convergence if the
nodal basis is used. As you can see, the ramifications of not using the hierarchical

bases are huge.
Fortunately, the fact that the algorithms are caught in a local minimum is easy

to see for the hard crater images, since the estimated images that are created as
a by-product of each function evaluation show streaks where the photo-topography
constraints are not met (these streaks are difficult to see in the halftoned reproductions
of the gray level images). Considering this fact, I recommend that the largest number
of hierarchical basis levels be used to speed convergence and the results checked by
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looking at the estimated images.
Clearly, the algorithm that performed best is the z-only algorithm. Not only is

it the quickest algorithm to compute (i.e., one iteration of the z-only algorithm com-
putes faster that one iteration of any of the other algorithms)., but it also has the
best convergence rate. This algorithm and the next best algorithm, the disparity

algorithm, were created by directly implementing the problem constraints as a cost
function. There might be a lesson here that the best algorithms are formed by in-
corporating the constraint equations into the cost function in the most direct and
straightforward way.

SThe evaluation tune for the algorithms is approximately proportional to the number of free

variables: N2 for z-only and disparity, 3N2 for -pq, and 2N2 for dual-z.
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Chapter 6

Comparison with
Shape-from- Shading

In this chapter I show how a simple shape-from-shading algorithm performs on my test

images. By restricting the z-only algorithm to work on a single image and assuming

orthographic projection I can create an algorithm similar to Szeliski [Szeliski. 1991]

and Leclerc and Bobick [Leclerc and Bobick, 1991]. The resulting algorithm is based

on the cost function,

min /(E(x,y) - R(p,q)) 2 + A(V2-)2}dxdy (6.1)

where

P= : (6.2)

q zy.

The shape-from-shading algorithm is based on z but cannot estimate the true depth:
the algorithm can only estimate the shape. The depth bias is unobservable to this
algorithm.

Following the development of the z-only algorithm, the discretized version of this

cost function is

mnn 2NM 2  (y) - R(p, q)) 2 + A(V2z) 2}. (6.3)

Note that this cost function directly uses the values in E(x, y) without having to

interpolate as was required when forming F(x, y) for the z-only algorithm.
I show the performance of the shape-from-shading algorithm on the left image of

four test image sets in Figures 6-4-6-3. The figures show the cost function history
ana optimization parameters as a function of the number of function evaluations.

Also shown is the estimated surface shape at various stages during the convergence.
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Figure 6-1- Performanxce of the shape-from-shading algorithm on the left easv Crater image.
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Figure 6-2: Performance of the shape-from-shading algorithm on the left hill image.
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Figure 6-3: Performance of the shape-from-shading algorithm on the left mountain image.

• • •• • •• •0

0



99

Comvwwe• Hiaat Lambda Parammer Hsw

10* .
lO °

0 500 1000 150 0 500 1000 1500
Ilerbab lImbo.

00

Eximamd map at anwom 1200

Esumazwd smface at de. oa '0 Efumted swface ax iteruou 200

Eaumead swt a r summ 600 Ellimated swface a atmaon 1200 0

0 .

Figure 6-4: Performance of the shape-from-shading algorithm on the left hard crater image.
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Image set Re]. SFS Error Rel. :-only Error

Easy Crater 0.6242 0.1,721
Hill 0.2083 0.0175
Mountain 1.6343 0.7177
Hard Crater 1.3532 1.0715

Table 6-1: Estimation error of SFS algorithm on the test images compared to :-only results 0
(1200 iterations).

The figures show that the shape-from-shading algorithm can determine the shape
of the surface. but with some error. I have summarized the final error between the
estimated shape and true shape in Table 6-1. The estimated surface and true surface
offset so that their average heights coincide before computing the errors shown in the

table. The error was computed using Equation 5.2.
The estimation error when using shape-from-shading alone is greater than the

estimation error when using the z-only algorithm. While this is not surprising since
the :-only algorithm has two images to work with instead of one, it is nice to see that
significant performance gains are possible when using a fused algorithm.
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Chapter 7

Error Analysis
0

It is equally important when developing algorithms to investigate their robustness in
the face of errors. In this chapter I present the results of running the z-only algorithm
on hill images that contain errors. I have introduced errors of three types:

1. measurement errors, 0

2. geometry errors.

:3. reflectance errors.

Each error is introduced separately to simplify the analysis. In each case, a figure is 0
presented that shows the relative and absolute error between the true and estimated
surface. along with the estimated surface. convergence history and estimated images
for the worse case. All the results below are the error after 600 function evaluations
(about 300 updates). The initial condition for each case was a flat plane at the
nominal depth. For reference. the relative and absolute errors after 600 function 0
evaluations on noise-free images are 0.0175 and 0.0247 respectively.

7.1 Measurement Errors

To determine the performance of the z-only algorithm on noisy images I added Gaus- 0
sian white noise (with signal-to-noise ratios (SNR) of 100, 10, or 2) to the hill images.
The resulting brightness values were then clipped to the range [0. 1]. The results of
running the z-only algorithm on these noisy images are shown in Figure 7-1 and Ta-
ble 7-1. The figure shows that the algorithm performs well even for a signal-to-noise
ratios of 2 and that the estimate degrades gracefully as the SNR is decreased. 0

7.2 Camera Geometry Error

The effect of errors in the camera geometry were investigated by adding error to the 0
baseline distance. interior orientation parameters. or by rotating the images to move
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Case Change Rel. Error Abs. Error

Nominal (z-only) 0.0175 0.0247 0

1 SNR 100 0.0203 0.0275
2 SNR 10 0.0751 0.1323
3 SNR 2 0.1436 0.1701

Table 7-1: RMS Estimated surface error from noisy images. 0
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Figure 7-1: Performance of z-only algorithm on noisy hill images

the epipolar lines out of alignment. Each change was introduced independently. The
baseline error images were created by changing both the baseline and nominal depth
by the same percentage in order to keep the interior orientation parameters constant 0

(10%. 20%, and 30% changes where introduced). The interior orientation error images
were created by offsetting the origin of the camera coordinates in a random direction
with magnitude of 1, 3, or 6 pixels. The epipolar error images were created by rotating
the images so the total error introduced between the images was 0.5, 1, or 3 degrees.

The results of running the z-only algorithm on these changed images are shown in S
Figures 7-2-7-4 and Table 7-2. The baseline errors mostly affect the absolute depth
of surface estimate and have little effect on the relative error of the surface. On the
other hand, the small change I introduced into the interior orientation parameters
results in a profound change in the estimated surface (see Figure 7-3). Clearly it
is important to have accurate knowledge of the camera parameters to obtain good S

0
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Figure 7-2: Performance of z-only algorithm with hill baseline errors.
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Figure 7-3: Performance of z-only algorithm with hill interior orientation errors.
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Case Change Rel. Error Abs. Error
Nominal (--only) 0.0175 0.0247 0

1 baseline error (-10%) 0.0189 10.0075 4
2 baseline error (-20%) 0.0374 99.9331
3 baseline error (-307) 0.0609 199.8330

1 interior orientation error (1 pixel) 0.0716 0.0744
2 interior orientation error (3 pixels) 0.3214 0.3228

3 interior orientation error (6 pixels) 0.9985 1.0506

1 epipolar error (0.53) 0.03191 0.0499 1
2 epipolar error (1°) 0.0570 0.0630
3 epipolar error (30) 0.0943 0.2432

Table 7-2: RMS Estimated surface error from geometry errors.

estimates.
Figure 7-4 shows that a moderate amount of error in the epipolar calibration can

be tolerated with only a small effect on the estimated surface. This is good news
since most planetary images will have to be re-projected into the aligned optical axes
coordinate system. Figure 7-4 shows that the algorithm can tolerate some errors in 4
this projection and still produce meaningful results.

7.3 Reflectance map errors

The effects of errors in the reflectance map were investigated by changing the light 0
source positions or by scaling brightness values in the images to simulate an error
in albedo calibration. I did not investigate the effects of using the wrong reflectance
(such as Minnaert reflectance) since the estimation errors due to this effect cannot be
generalized. The light source error images were created by changing the light source 0
direction by 5, 15, or 30 degrees in a random direction. The albedo error images were
created by scaling the images by 1/0.99, 1/0.95, or 1/0.90. The results of running the
s-only algorithm on these changed images are shown in Figures 7-5-7-6 and Table 7-3
Figure 7-5 shows that light source position errors of up to 30 degrees have relatively

little effect on the estimated surface. While, typical photo-topography images have
light source (sun) positions that are known to high precision, these results show that 0
the --only algorithm could be applied to images where the light sources are not as
well known.

On the other hand, Figure 7-6 shows that the algorithm can tolerate albedo cali-
bration errors up to 10%. These results are misleading, however, since the algorithms 0
fail to converge when the albedo error is greater than 10%. The algorithm may not
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Figure 7-4: Performance of z-only algorithm with hill epipolar errors.
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Case Change Rel. Error Abs. Error

Nominal (z-only) 0.0175 0.0247 1
1 light source error (53) 0.0551 0.1912
2 light source error (15') 0.0178 0.3219
3 light source error (30') 0.0922 1.1150

I albedo error (1%) 0.0241 0.0341 0

2 albedo error (5%) 0.0681 0.0686
3 albedo error (10%) 0.1234 0.1253

Table 7-3: RMS Estimated surface error from reflectance errors.

converge in those cases since the Lambertian reflectance map cannot exceed 1.0 and
the error images produced contain many brightness values beyond that limit. The al-
gorithm can probably tolerate albedo calibration errors that don't create normalized
brightness values greater than 1.0.

7.4 Summary

The foregoing plots and tables indicate the z-only algorithm is fairly robust. In
particular. they indicate that the algorithm can produce a reasonably good estimate 0 *
even if the images are noisy, the camera geometry is not known perfectly, and the
reflectance properties are in error. They also show that it is very important to have
accurate internal orientation parameters. and an accurate baseline in order to estimate
the depth correctly.
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Chapter 8

Algorithm Extensions

In this chapter I discuss two ways of extending the algorithm to varying albedo
surfaces. While all the previous algorithms have been restricted to surfaces with a
constant (known) albedo. the algorithms discussed in this chapter work for surfaces
that have markings or striations. The new algorithms still require that the geometric 0
reflectance properties be constant and known for the whole surface.

I also show in this chapter how more general camera geometries can be accommo-
dated. Basically, the images are projected into a coordinate system that has aligned
optical axes.

8.1 Varying albedo algorithms

As mentioned in Section 2.5. the simplification of constant albedo severely restricts
the applicability of the algorithms that are developed in Chapter 4. In this section. I
lift that restriction. The algorithms that result, do converge to a solution close to the
actual surface. but the convergence is slower than for the constant albedo algorithms.

The first thing to understand is whether we would expect a varying albedo algo-
rithm to work. In other words, 'Does it seem reasonable that a unique value of albedo
can be chosen for each point in the image'? Let's investigate that question.

Each point in the images provides two constraints via the two -ztended photo-
topography equations

EP"(x + Lb,-y) = p(xy)R") (p,q).
2z(8.1)

E (x - Lb, y) = p(x, y)k2) (p, q),

for the two unknowns z and p. Since this is a situation with two equations and
unknowns, a solution is at least conceivable. Investigating further we find that for
a given p(x,y) there are at most two gradient directions (p(x,y),q(xy)) that can
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satisfy each equat~on.' These gradient directions cannot be chosen arbitrarily since
they must be co-sistent with the underlying height z. via the integrability constraint 0

equations.

+ (S.21

yzýI + z

A solution is obtained when a common. consistent gradient estimates exist. Con-
versely, a given z defines the gradient components and the relationship between points
in the images. A solution is obtained when p can be chosen to match the images E('ý
with the images estimated from the reflectance maps.

From the foregoing discussion it should be clear that it is possible to create image
sets that are inconsistent so that no solution exists. On the other hand it should
also be clear that given consistent images a solution exists. Thus we find that the
extended problem is well-posed.

8.2 Minimizing departure from a constant albedo.

The first algorithm is applicable to slowly varying albedo surfaces. It is based on the
:-only cost function but includes a penalty term of the form p(p - 0)2 where ý is
the average albedo over the whole image. This additional term penalizes departure
from a constant albedo and can be used to estimate the calibration factor Ap on the
reflectance. The cost function including this term is

min= J E(')( + y) - p(x. y)R()(p. q) )2 2:
+ (EL2( _ -2.y) - p(x,y)R(2)(p,q)

"+A ZZ + 2- + Z14] +,(p - 0)2d} d,, (8.3)

where fpdzdy (8.4)
fr, dx dy

and D is the whole image. The smoothness penalty term is used to guide convergence
and is not required to guarantee a unique solution. Usually, A is slowly reduced to
zero as the solution is reached to avoid biasing the solution. The ,igorithm based
on this cost function converges, albeit slowly, and works best for surfaces that have
nearly constant albedo.

'For surfaces with Larnbertian Reflectance. 0

0
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8.3. MINIMIZING LOCAL ALBEDO CHANGE. I1l

8.3 Minimizing local albedo change. X)

The second algorithm is applicable to surfaces with piecewise constant or piecewise
linear albedo. In this case, the cost function includes a penalty term of the form
'i(p - 0)2 where A is the average in some local neighborhood A'. This term is similar
to a discrete approximation to the Laplacian and penalizes departure from a local av-
erage. For a piecewise constant albedo, this term will be zero except on the boundary 0
between the constant areas of albedo. The cost function including this term is

minJ = Jif E(E)(x + Lby) - p(x,y)R(')(p.q)

+ E() 2(x - ýb-,y) - p(x.y)R(2)(p.q))

+2A-, ++) p (p-)2}dx dy (.5)

where t dwherefA, pdx dy
- = fA,,dx dy (8.6)

Following the implementation of the z-only algorithm, the cost function can be
discretized to become.

n-in J =2NM, 2 1 {(F(" (. y) - p(x.y)R(1)(p,q))
2N x2 yEP

+ (F')(x. y) - pz, y)Rl')(p. q))

+ z' + [z~ 2z+ +pU(p.)}(S7

where 0 is the average in a 3-by-3 neighborhood,

F1 mr-nm

The performance of this algorithm on the varying albedo test images is shown in •
Figures 8-2-8-4.

• • • •• • •0
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8.4 Varying albedo test results.

To test the algorithm based on this cost function, two of the test images were modified
to include either a p = 0.7 albedo strip from the lower left to the upper right (Figure 8-
1) or an p = 0.7 albedo variation in a layer similar to what would be expected from
sedimentation processes (Figure 8-3).

8.4.1 Crater with dark stripe

The first set of test images has the p = 0.7 albedo stripe imposed on the easy crater
test case. The light source geometry, true surface, and true albedo are shown in
Figure 8-1. The albedo variation is 'painted" on the crater surface.

The Figure 8-2 shows the result of applying the varying albedo algorithm to this
test case. The figure shows the cost function history and optimization parameters as a
function of the number of function evaluations. Also shown are the estimated surface
and albedo image at various stages during the convergence. While the algorithm
does converge to a surface and albedo map close to the true values, the convergence
is much slower than for the constant albedo algorithm and the final surface estimate
has more error. Of course, the constant albedo algorithm would not perform any
better if presented with the varying albedo images.

8.4.2 Hill with sedimentation 0

The other set of varying albedo test images is based on the hill test case with the
albedo set to p = 0.7 for surface heights in a certain range (see Figure 8-3). The light
source positions and geometry are the same as for the hill test case.

Figure 8-4 shows the result of applying the varying albedo algorithm to this test 0

case. The figure shows the cost function history and optimization parameters as a
function of the number of function evaluations. Also shown is the estimated surface
and albedo image at various stages during the convergence. While the algorithm
does converge to a surface and albedo map close to the true values, the convergence
is slower than for the constant albedo algorithm and the final surface estimate has S

more error.

8.4.3 Summary

The varying albedo algorithm can successfully estimate both the surface depth and 0

the albedo variation but requires at least 2 times as many function evaluations than
the constant albedo z-only algorithm. In fact. the performance figures in this section
show surfaces that have not converged even after 2800 function evaluations. However.
these algorithms must be used for surfaces that cannot be estimated correctly with
the z-only algorithm because of varying albedo. 0
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Figure 8-1: Crater on flat plane with varying aibedo. Shown is the camera geometry as
projected into the zz- and yz-planes, the true surface as a mesh plot. albedo image. and
reflectance function contours for the two light source positions.
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Figure 8-2: Performance of the varying albedo algorithm on the varying albedo crater
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reflectance function contours for the two light source positions.
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Figure 8-4: Performance of the varying albedo algorithm on the varying albedo hill images.
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Figure 8-5: Camera reprojection geometry.

The slow convergence is a direct result of increasing the number of degrees of
freedom available to the algorithm. It has the choice of meeting the photo-topography
constraints bv changing the depth or by just changing the albedo. Initially it's easier 0
to change the albedo since it shows up directly in the constraint equations. However.
using albedo changes alone is not sufficient to minimize the equations. so after a while
the surface height begins the change.

The convergence would probably be faster if the stereo part of the algorithm was
more powerful. The disparity of the albedo edges should provide a strong constraint 0
on the height. The fact that they don't is due to the weakness of the stereo part of the
algorithm. Hopefully ongoing research will turn up a more powerful stereo algorithm.

8.5 General Camera Geometry

The algorithms presented thus far are based on the simplification that the camera
optical axes are aligned. This is never true for images taken from moving vehicles
such as inner-planetary probes. satellites, or aircraft. The simplification of aligned
optical axes is used since it greatly simplified the equations. The simplification can 0
be lifted by re-projecting the images from their true camera coordinates into the
coordinates of a virtual camera with its principal point in the same position but
with the aligned orientation (see Figure 8-5). 1 refer to the true camera coordinates
as the primed coordinate system (i.e.. (x'.y'. :,)T and the aligned coordinates using
un-primed notation, consistent with the equations presented so far. 0

Points in a camera image map to rays in space. The mapping between coordinate
systems preserves the orientation of these rays in the global coordinate system. Let
rI = (X'. y', f,)T be the coordinates of a point in the camera's image. This maps to
the ray in the direction r'. Let T be the rotation matrix relating the two coordinate

• • • •• • •0
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systems. that is,
r'= Tr, (8.9) 0

for any vector r (see Figure 8-5). The ray in the aligned coordinate system is then
along the direction Tr'. This ray can be re-projected into the virtual image plane
with focal length f by normalizing,

r = (TTr,) (8.10)

where i = (0.0. 1)T is the unit vector along the z axis in the aligned coordinate
system. Similarly,

= f(Tr) (8.11)(Tr). ' V811

relates points in the un-primed image to points in the primed image.
We can use these equations to create the image that would have been seen by a

camera with aligned optical axes. Given E'(r') in the true camera coordinate system.
the re-projected image is

E(r) = E' ( Tr) (8.1-2)
(Tr) .V

since TT is the rotation matrix from the aligned coordinates to the true coordinates.
For r = (x,y, f)T this equation written in (x,y) notation is 0

E(x. y) E'( t "r + t1221 + t[3f t'j + 422Y + t23f (8.1:3)
t31X + t32y + t 33f' t31X + T32y + t33f

where the elements of the 3-by-3 matrix T are ti,. For discrete images. the value of
the above expression can be computed using some type of interpolation (say bilinear
interpolation).

Note that this re-projection can be easily incorporated into the z-only, disparity-
based, and varying albedo algorithms by defining FO) to interpolate in E' instead of
E.
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Chapter 9 .

Summary
0

This thesis has presented a methodology for combining or fusing multiple vision algo-

rithms. Four different cost functions (and their associated algorithms) were presented
that illustrate the methodology. The basic methodology is to combine the constraint

equations of the problem to form a single cost function in the spirit of variational 0
calculus.

The performance of the four algorithms was evaluated using four synthetic noise-
free test images of varying difficulty. The most closely-coupled algorithm, the :-only
algorithm, had the best performance. The z-only algorithm was able to correctly
estimate the synthetic surface in about 200 function evaluations for three of the four *
cases. For the remaining case (the hard crater images), the algorithm got stuck in a
local minimum, as did all the algorithms tried. This case has lighting geometry that
results in ambiguous shading information.

It was shown that the z-only algorithm has much better performance using the
two photo-topography images than a simple shape-from-shading algorithm which uses 0
only one image. This performance increase validates the fusion approach to obtaining
better performing vision algorithms.

The z-only algorithm was also shown to be robust; able to accurately estimate the
synthetic surface in the presence of several types of errors. The performance of the
algorithm based on images that contained noise, geometry error. or reflectance errors 0
was shown. In most cases. the algorithm was able to form a good estimate.

9.1 Mars Images

The robustness and performance of the algorithm on synthetic images, builds confi-

dence that the algorithm can perform similarly on real images. One such set of real
images is shown in Figure 9-1.1 The images are Viking stereo images of Mars. The
images as received (and shown) are processed versions of the original Viking images.

0
'We are grateful to Mike Caplinger for providing these images.
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They have been reprojected into an aligned coordinate system and filtered to remove
biases due to any large scale albedo variations. The images also have very similar 0
lighting conditions (they were probably taken close together in time). This image
pair thus doesn't represent the best possible situation for the algorithms developed
in this thesis. Nevertheless, the :-only algorithm performs well.

The estimated surface from the :-only algorithm is shown in Figure 9-2 and 9-
3. The figures show that the z-only algorithm produces a reasonable estimate 0

of the Martian surface. It should be noted that the camera geometry and light
source positions were given, but the reflectance map for the surface of Mars was not.
The results shown are based on the assumption of a Lambertian reflectance map.
The nominal slope of the estimated surface (see surface plots) is an artifact of the
camera baseline orientation with respect to the planet's surface and can be removed 0

by shifting the camera positions along their line of sight. In fact. the estimate shown
is based on cameras that are shifted slightly so that the light source positions could
be represented using (p,, q,) gradient components.

While it is difficult to see in the halftone reproduction of the estimated images.
the images contain a slight ghosting effect.' Tb, --hosting is like a double image and 0

is depth dependent. By running the algorithm with slightly shifted camera principal

points, different parts of the estimted images can be brought into registration. The
g.osti;g is probably caused l' .sing Lambertian reflectance instead of the true radi-
ance function for the Martian surface. However. even though the algorithm used an
inaccurate reflectance function. the .uirface estimate does contain many of the small 0
and large scale features found in the %'iking images. Examples include the cliff in the
upper right and the valley just below, as well as the craters near the bottom of the
irmages and the ridges in the center. An even better estimate of the Martian surface
could have been obtained if the true reflectance function were used with the _-only
algorithm. 0

9.2 Future research

There are several directions this research can go in the future:

e Apply the fusion methodology outlined in this thesis to other vision problems.

* Apply the z-only algorithm to more real images to further judge its performance.
Particularly apply the algorithm to image sets with differing lighting cond't ions.

9 Determine the )erfovmance of the z-only algorithm when more realistic re-
flectance maps i, e us. "vith the algorithm. Recall that while I only tested the

2 A requirement for the particular implementation I A-.. . used With slight modifi-ations the
algorithms could be used with any other light source position parameterization 0

'The extent of the ghosting is less thin 2 pixels for a 257-by-257 ir-age
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Figure 9-1: Stereo images of Mars taken by the Viking probe.
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Figure 9-2: Results of running the z-only algorithm on the Viking Mars images.
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Figure 9-3: High resolution mesh and surface plot of estimated Mars surface. The surface
plot was created by coloring the surface using the left estimated image.
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algorithms on surfaces with Lambertian reflectance, other reflectance functions X)
can easily be used with the algorithm. 0

* Develop an algorithm with better stereo integration that can correctly estimate
the surface for the Hard Crater test case. To do this may require developing a

new innovative stereo algorithm.

Of these possible directions, the last one presents the most challenges and offers the
most rewards.

9.3 Conclusions

This thesis has shown that the variational approach to fusion problems can produce

robust. well performing vision algorithms. It has also shown that fused algorithms

can have significant performance gains over non-fused alternatives.

The four example algorithms, each based on a different variable representation.

showed that choosing the right variable representation is important to achieving good S

estimates.
Finally in conjunction with this research, a new algorithm, the :-only algorithm.

was developed to solve the photo-topography problem. This is the first well perform-
ing algorithm to solve that problem.

0
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Appendix A o

Gradient derivation for z-only
algorithm •

This appendix presents the gradient derivation for the z-only algorithm for use with

the conjugate gradient optimization technique. 0

A.1 Cost function.

In the main text, the discrete approximation to the cost function for the Z-onlv
algorithm is given as

rmnj- 2MJ q 2 Z (F(l)(x. y) - Rt l)(p. q)) + (F(2)(.y)- R(2)(p. q))

+ , fAA)

where D is the discrete domain of the underlying variables in the global coordinate

system. p and q are computed using

f 

0

XrZ . (A.2 ,

YZS+ Z

.l and N are the row and column dimensions of the discrete domain and ( is the

grid spacing (assumed to the same in both the x and y directions). The F(')(x. y) are 0
interpolated from the input images E(i)(x, y) via linear interpolation.

F(')(x, y) = E()(±. y) + (,r ± Lb- - i) [E(') (i + 1. y) - E(')(.t. y)l (A.3)

125
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where fb
S =floor(X -L- -2). (A. 4

and the floor(x) function returns the greatest integer that is smller than x. These
equations assume that x is sampled on unity-spaced grid.

A.2 Bicubic extrapolation 
0

Recall that the matched-grid implementation is used for the z-onlv algorithm. In
this implementation. - is the same size as the image arrays E(') and the boundary is
extended if necessary based on bicubic interpolation. Let z, be a value in the first 0
column of z (i.e., on the left boundary of z). Then the extrapolated value z,0. is
computed using

z,0 = 3z,1  - 3z, 2  1 -,3. (A.5)

Similar equations work for the other boundaries of z. In this way, a M-bv-.N matrix
can be extrapolated to form a (M + 2)-by-(N + 2) matrix. 0

A.3 Gradient of terms based on convolution.

Theorem 1 Let y be computed via a 2-D convolution from the field : and the filter 0
h. i = z * h. Let f(x) : R -- R, be any scalar point function. Then the derivative of

the scalar cost function J = Z, E, f (y,,) with respect to zim Is

ad df(x) •h (A.6)

azim d 0

where lh, h(A.g

Proof Using the definition of the 2-D convolution.

yIJ = E E _kjhj:.kj-.s- (A.S)
k s

the cost function can be expanded to obtain.

j f~ (zZ kshj-kj- (A.9)

kS

l 3

S 0 50 0 50 0
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The sums are taken over the entire range of indices into the matrices. Taking the
derivative and using the chain rule we find.

df ___kaZ =I Fh± -. :ks -A .10

- LE •x-.J-h • ti.\.12•

I z E df (A.13I

• (A.142

dx

The result holds for computational molecules as well since operating with a com-
putational molecule m is equivalent to convolving with rf. 0

Theorem 2 Theorem 1 also holds for scalar functions of multiplE argunmnt.,. In that
cas..e

S•f + Of ,h+ ,A.15

Proof Suppose y and w are defined via 2-D convolution. y = z * h. u- * .
and f(xj.x 2) : [W x 5R ] , then the partial derivative of the cost function J
E2 2 , f (Y ',.w .') is

cdJ f- h+- *g. (A.16) 0

The proof follows the same lines as the proof for Theorem 1 l.

A.4 Cost function derivative.
0

('sing the chain rule, the derivative of the cost function (Equation A.1) is

Vg OF"-n" ) Op•-- - O•bZ-

dzdz~
FI ) R (1)) _ R")} p R"2) r-

+ (F (2) -- R (2)) O F " _ R 2)--P R-; (2)•, dq z ,

+ z- + 2z,,, + a:.&:, }. (A.l I

0

000 0 0 0 0 0 0
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Let's look at each term in turn. The derivatives involving the interpolated images
can be computed using the definition of P 0

o--7 E(-" y)- _: _ [E( + 1.Fy) - E(E- y)]

+ x(Lz± _j4 [E.(±i+ly)-E,(±.y)] (9X (A.1IS

= fL E,((x).y). (A.)9

That last equality is possible since ±/O(,Zk, = 0 for one-sided derivatives.
The derivatives of the gradient components p and q can also be computed using 0

their definition. They are.

ap f_ j 2 (X:z. + Z) - f(z + --
iZ- = 3-k- + :j (A.20)(94m• (-zz + )

f 9.- f_-, 1 92-.= (xz+z)2  
(A.21)

and.
fq _..2j_ f z 5

9

k, (y + ) . (A.22) 0

As discussed in the main text, the partial derivatives of z (z", Z. z:, and so on).

are computed via 2-D computational molecules. Cill these molecules. h,. h,. h_
and so on. in the obvious way. Using the results of Theorem 1. the derivative of the
cost function can then be written. 0

'9j = [-(F"l) - R('")Ex(') + (F(2 ) - R(2))E.(2)] fb

"+ [(F() - R(1))R(1) + (F(2) - R(2))R(2)] f 2PP(Xz, + Z)2 0

"+ [IF(1)- R )R( + (F(2 ()R- 2 f zY
I I (Yz + Z)2

- {(F"• - R"I)R"I + (F(2
) - R(21)R?2)I ( - ) h,

- (F() - R(1)Rq" + (F(2) - R(2))R(2)J ( h}

+ Z [Z o0 h, + 2z,, o h,' + ZS o0hm,]. (A.23)

These equations are not the whole story since they don't work on the boundary. I 0
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will show how to take into account the effect of the bicubic extrapolation on the left
boundary: the other boundaries are dealt with in a similar way. Suppose h has either 0
2 or 3 columns. and let 'ý be the extrapolated version of z (for simplicity assume -
is square of size N-by-N). In this case the subscripts on - run from 0 to N - 1.
Theorem 1 states that the derivative of J = E • f(. h) is

a '_ df Z * h. (A .24)

Call this matrix G. Since i is computed from z via the bicubic extrapolation described
in Section A.2. we can compute aJ/iz by taking into account the dependence of :,0
on z,,. z,2. and Z,3. Let G be the matrix J/az., then columns 1-3 of G can be
computed using

Gi1 = + 36,o. (A.25)

G12 = t2, - 3G2o. (A.26)
G13 = 613 + Gto. (A.27)

Similar expressions hold for the other boundaries.

-• Iil n|ellilli ii i nlill B|B I I I 0



S

130 APPENDIX A. GRADIENT DERIXATION FOR Z-ONLY ALGORITHM 4
0

S

S

0

0

0

S

0

0

0

0 0 0 0 0 0 0 0 0



Appendix B

Monfile Listings

This appendix contains the MATLAB' M-file source files for the DFSS algorithms.
The source files are presented for the six algorithms in this thesis: zpq. z-only. dual
z. disparity, sfs. and varying albedo. A key to the files is given in Table B-i.

B.1 Cost function and gradient routines

B.1.1 hbdfss..cost3c.m
ifunction [1, FRl ,Fl2] .hbdfss..cost (v seize, levels, params,E1 ,E2, lambda,mu)

2 %.DDFSS..COST3C Cost function for depth from shading sand stereo*
3 %. problem using hierarchical basis functions. uses true.
4 %. perspective projection.
5 %
6 %. I-NRDFSS..COST3C(V,ZSIZE,LEVELS,PARANS,EX,E2,LANDDANU) where
- %. V -(z,p,q) are the optimization variables, ZSIZE is
a7% SIZE(z), LEVELS is the number of h-basis levels. El and E2 are

9 %. the input images, LANUDA is the scalar weighting factor on
7. departure from smoothness and NU is the scalar weighting factor on

ii %. integrability. The image parameters
12 %. PAAANS - Ef~b,zO,psi,qsl~ps2.ps2,vxl,vyl,vx2.v72J.
13
1 4 %. Clay R. Thompson 5-18-92
is %. Revised to use correct p~q calculation.
16 %. Revised to use p,q,z of the Same size AS E.
i- % Revised to output estimated image.

1: %. Revised to support multi-grid acheme.

20 %. Camera constants0
21 f paes* )
22 b -params(2),
23 z0 params (3);
24 gamea - feb/2.
2s delta - params(12),
26 ares - prod(zsxze)*deltaedelta;
27
28 %. Light Source positions
29 psl - params(4); qsl - params(S).
30 ps2 - params(6); qs2 - paramm(7);
31
32 %. Camera coordinate calibration
33 vzii params(8); vyl - parame(g);
34 vx2 - paramo(10); vy2 a params(li);

11MATLAB is a product of The MathWorks, Inc.. 24 Prime Park Way. Cochituate Place. Natick
MA 01760, (508)653-1415.

131



132 APPENDIX B. M-FILE LISTINGS

Algorithm cost functions and gradient routines

hbdfsscost3c.m Cost function for zpq algorithm.
hbdfss.grad3c.m Gradient function for zpq algorithm.
hbdfss-cost2c.m Cost function for z-only algorithm. 0
hbdfss-grad2c.m Gradient function for z-only algorithm.
hbdfss-cost4.m Cost function for dual-z algorithm.
hbdfss-grad4.m Gradient function for dual-z algorithm.
hbdfss.cost7.m Cost function for disparity algorithm.
hbdfss-grad7.m Gradient function for disparity algorithm.
hbdfss-cost8b.m Cost function for varying albedo algorithm.
hbdfss-grad8b.m Gradient function for varying albedo algorithm. 0
hbsfs-cost.m Cost function for shape-from-shading algorithm.
hbsfsgrad.m Gradient function for shape-from-shading algorithm.

Support routines
rmap Lambertian reflectance function.
rmapp Derivative of reflectance function with respect to p.
rmapq Derivative of reflectance function with respect to q.
conjgrad.m Conjugate gradient optimization.
lsearch.m Line search function for conjugate gradient optimization.
filter2d.m 2-D computational molecule filtering.
cfilter2d.m 2-D computational molecule filtering with bicubic interpolation.
hbasis.m Main level hierarchical basis conversion.
hb.m Hierarchical basis interpolation.
hbt.m Adjoint hierarchical basis interpolation.
interpx.m Linear interpolation in the x direction.
domain2d.m 2-D plaid domain generation.
icubic.m 1-D cubic interpolation.
dcubicx.m Derivative of 1-D cubic interpolation with respect to x.
dcubicz.m Derivative of 1-D cubic interpolation with respect to z.

Table B-1: M-file Descriptions.

• • •• • •• •
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B.1. COST FUNCTION AND GRADIENVT ROUTINES :3:34

35 vx a (vxl~vx2)/2, vy = (vyl~vy2)/2;
36
37 % Etract x,p.q and transform into nodal basis

36 .mi=zs&e(1); az - zsiz*(2);
39 V( =: I1:aZ) ;
40 p - v(:.nz+[1:nz]);
41 q . v(:.2*nz + [I:nzi))
42 Z( bnszlvl)
43 p(. hbasis(p,levels):
44 q(:) *hbasi~s(q,levels);

45
46 %. Spacial coortinates in image.
47 mi,nLZ] = siZe(Z) ;
46 [xzy) I domain2d([Omnz-lJodelta~vz+l [O:nz-l)edeltaevy.1);
49
so %. Stenclsli
si hxz - (-1 0 1)/(2edelta). %. 1-derivative for zi
s2 byz - [1;0;1) /(2*delta); %. Y-derivative for zy
53 hi : [-1 1;-_1Jl/(2$delta); %. X-derivative
54 hy = 1 i;-1 -1J/(delta); %. Y-derivative
515
56 %. Compute reflectance map values.
5- R1 - rmap(p.q~psl~qsl),
5a R2 = rmap(p,q.ps2,qs2):
59
60 %. Compute numerical derivatives of p,q, and z.
61 px - filter2d(p,hx.'rosiz*e);
62 py - filter2d(p,hy,'resiie');
63 qx - filter2d(q,hi,1resiie');
64 qy - -filter2d(q,hy, resize');
65 zi - cfilter2d(i,hzz);
66 zy ctilter2d(i~byz);

66 %. Compute estimates of p,q using numerical derivatives of z.
69 pe - fesi./(i.eii~i):
7o qe - fezy./(y ezy~z);

7'2 %. Compute disparity.
73 d - (fob/2)./z;
74
75 %. Determine stereo mapped images FI.F2. Set error to iero where F is Nal
76 Fl - interpi(El.(xed-vil-1)/delta+1);
7-out - isn-,n(Fl); if any(out( 1)), F1(out) - RI(out), end,
78 F2 - interpz(E2.(x-d-vx2-1)/delta*1);
79 out - isnan(72), if any(out(:)), F2(out) - W2out), end,

80
81 termi - (0 S/area)esum(sum((F1-R) -2 + (F2-R2) -I)).
a2 term2 - (0 5/area)elembdaesum(sum(pi.-2 + py.-2 + qi.-2 + qy.-2)).
s3 term3 - (0.5/earea)m~ue~sum~si((pe-p).-2 + (qe-q).'2)).
64 *Ldisp(sprintf('Terms: %.12S5f .12.Sf 7.12.Sf',terml,term2,term3));
65 J - (terml+term2+term3,terml .term2.termL3]

66
7- if nargout>1.

66 FR :1 [E1;F1;R1;abs(F1-R1))
99 712 * E2;F2;12;abs(F2-12)i;;
90 end
91

B.1.2 hbdfss..grad3c.m
ifunction [Jfll.712]ohbdfass.cost(v,zsize,levels~params,E1 .E2,lsmbdasmu)

2 7.NDDFSS-COST3C Cost function for depth from shading and stereo
7.% problem using hierarchical basis functions. Uses true

4 %. perspective projection.

6 7. J-NDFSS..COST3C(VZSIZE.LEVELS.PARhflS.E1.E2,LANBDA.N[U) where
7.% V - (i,p,q] are the optimization variables, ZSIZE is

a 7. SIZZ(i), LEVELS is the number of h-basis levels El and E2 are
9 7. the input images, LAMBDA is the scalar weighting factor on

10 %. departure from smoothmess and NU is the scalar weighting factor on
ii %. integrability. The image parameters
12 %. PAEANS - [f,b,iO,psl,qsl,pe2,ps2.vil,vyl.vx2,vy2).
13
1 4 %. Clay N Thompson 5-18-92
is 7. Revised to use correct p,q calculation.
16 %. Revised to use p,q,i of the same size as E.
17 %. Revised to output estimated image.
is %. Revised to support multi-grid scheme.
19
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20 % Camara comstants
21 f - params(l);
22 b - parome(2);
23 :0 - params(3);
24 gamma - f~b/2;4
25 delta * parsms(12);
Z6 area - prod(zsize)odeltaedelta.
2 7
2a % Light Source positions
29 psi - pareas (4); qsl - params (5);
3o ps2 - paams(G) ; qs2 - paxsms(7 );
31
32 % Camera coordinate calibration
33 vxI - parems (6); vyi - params(9);
34 vz2 - params(1O); vy2 - params(Ii);
3s vx - (vxi~vx2)/2; wy - (vyl4.vy2)/2;
3 6
37 % Extract z,p,q and transform into nodal basis.
3a ma *zoize(i); nz -zsizo(2);
39 z v(l:nI z) ;4 o p =v(. .nz+(1:nz]):
41 q *v(:,20nz + (i:nz]):
42 z(:) - hbasis(z,l~velsh;
43 p(:) - hbasis(p,lovels);
44 q(:) - hbasis(q~levels);
45
46 % Spacial coordinates in imago.

r7 azinz ; size(z)
do amin2d(tO:mz-lledelta~vz.1.(u~nz-Iledelta~vy.1.;

4 9
So % Stencils
s1 baa : WOO 0 1/(2*delta); % X-derivative for ix
52 hyz e 1; ;-1 /(2delta); % Y-derivative for zy
53 hx : E- :il]/(2adelta); % 1-derivative
Si by ; 11-I -I/(2edelta); % 1-derivative
55
$6 % Compute reflectance map values,
%7 K * rmap(p.q,po1,qsI);

5a 12 - ruap(p~q~paa,qs2);

6%: % Compute numerical derivatives of p,q, and z.* *
61 pa - filter2d(p,ha.'resiz*');
62 py - filter2d(p~hy.'resize');
63 q a filter2d(q,hx.'resize');
6ý4 qy - filter2d(q~hy.'resiz*');
65 zz - cfilter2d(z,haLz);
66 zy - ct'ilter2d(z,hyz).
67
5a %. Compute estimates of p~q using numerical derivatives of x,
69 pe fsza./(aCi.v:~);
,o qe efezy./(y.*zy~z);

72 %. Compute disparity.
73 d - (febl2)./z;
74
75 %. Determine stereo mapped images F1,F2. Set error to zero where F is Eel
?6 Fi - 2nterpx(El,(xsd-vai-I)/daltavi);
77 out - issaa(FI); if any(out(:)), FI(out) -11(out); end,
?s F2 - interpz(32,(x-d-vz2-1)/delta.1);
9o out - issaa(F2); if any(out(:)), F2(out) - W2out); end,

:I torsi - (0.6/area)#sum(smm((Fi-ll).-2 + (F2-l2).-2)?;
42 term2 - (0.S/aroa)*lambdaesum(em(pa.-2 + py)^2 + qx.-2 + q.2)

43 tern3 - (0.6/ars&)*muesqu(s~m((p*-p).-2 + (q*-q) '2));
44 7.disp(spriatf('Torme %12-Sf %1.612S %12 51'.termi,term2,%erm3));
45 J - [tterl~term2.term3,terml .teru2,term3];
46
47 if nargout>l.

es FRI : (31;FI;11;abs(FI-1)
KsF2e[2;F2;12;ab(F2-'12)

90 end
9 1

B.1.3 hbdfss..cost2c-m
,function ci fli .F2]*bbdfess-cost (a noarms .1152,) eabda)

2 1J130755.COST2C Cost function for depth :em shadidg and stereo
3 % problem with heirarchical basis functions. Uses true0
4 %. perspective projection.
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6 %. J-UIDFSS_.0OST2C(Z.I.PAIAflS, El.E2, LAMBDA) where Z is the surface
7.% height. I is the number of li-basis levels El and E2 are the input
% 7 images. LAMBDA is the scalar weighting factor on departure from
% s.moothness. The image parameters PUARAS - [f.b~z0,pxi,qsI,ps2.ps2]

107%
11 %. 3. [Jtot.Jimage.JsmoothJ.
I.,
13 %. Clay M. Thompson 2-24-91
14 %. Revised 4-3-91 by cut
15 %. Revised 5-10-91 by cat
16 7. Revised 5-19-91 by ctin

7. Revised 4-30-92 by cum to support multi-grid scheme.
is %. Revised to output estimated image.
39
20 %. Camera constants
21 f - p&AramS(1);
22 b - params(2);
23 zo - params(

3 );
24 gmma. - feb/2/z0;
25 delta -params(12).
26 area - prod(siza(z))*deltaedolta;

25 %. Light Source positions
29 psi - params(4), qsl - params(5);

30 p*2 - par&=s(6); qs2 - params (7);
31
32 %. Camera coordinate calibration
33 vZI - Parasee(8); vyl - params(9);
34 vz2 - params(10); vy2 - parsms(1l);
35 vi - (vxl~vx2)/2. vy a (vylovy2)/2.
36
3 %. Spacial coordinates in image.

35 (ini]l : size(z)
39 [x y domain2d(t0:mkz-l]5delta+vx+l,[0;nz-1Jedelta~vyl);

410 % Stencils
42 hi [ -1 0 1]/(2*delta); 7. X-derivative
43 by * t;0;lJ1/(2*delta); %. Y-derivative
44 hxz (1 -2 1; 2 -4 2; 1 -2 lJ/(4edeltaedelta);0
45 7.hzy E -1 0 1;0 0 0;1 0 -1J/(4edeltaodelta);
46 hxy [ -1 1;1 -1J/(deltaodelta),
4- hyy -(1 2 1;2 -4 -2;1 2 1)/(4*deltaadelta);
48 del2 -(1 4 1;4 -20 4;1 4 I]/(6wdelta*dolta);
49
,5o %. Compute p,q using numerical derivatives of z.

51z - hbasia(z~n);
s2 z2 - ctilter2d(z~hx).
53 zy - cfilter2d(z~hy);
54 p - foll /(x ozxzv);
55 q - f~zy./(Y *zyi~z);
56
57 % Compute reflectance map values.
so RI - rmap(p,q,psl~qsl),
59 R2 -ruap~p~q,ps2,qs2);
60
61 %. Compute numerical derivatives of z.
62 zii - cfilter2d(z~hzz);
63 zzy - cfilter2d(z~hzy);
64 zyy . Cfilter2d(z~hyy);
65
66 %. Compute disparity.
6- d - (fob/2)./z;

69 %. Determine stereo mapped images 71.72 Set error to zero where F is IaN
7o Pi - inoerpz(B1,(zid-vhl-1)/delta*1).
71 out - isnan(F1). if any(out(:)), Fl(out) - R1(out), end, keepi - out;
-2 P2 - interpz(322(z-d-vx2-1)/delta~l);

;3 oat - isona(P2V; if any(out(:) MI 2oot) - 12(out); end, keep2 - out;
74
5 termI - (0.S/area)osum(sva((F1-RI).-

2 
+ (-242) -2));

76 term2 - (0.5/area)elsmbdae(sum(smo(zlx.-2)) + 2*sum(sum(zxy.-2)) + sin(sum(zyy.-2))).
7' 1 term2 - (0.5/area)elembdaesum(sum(delsqz -2)),
75 7.disp(spristf('Terms : .12.Sf %.12.Sf',tsrmlterm2));
79 J3 a (tormI~term2,terml,term2];

:01 if nargout)1,
52 711 - [9I.F1;II:abs(F1-Rl);keepl].
83 F125 - [2;F2;R2;abs(F2-R2);keep2J:

00
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84 *ad X)

B.1.4 hbdfssgrad2c.m 0

i function G-hbdls*_grad(z,n,params 1,,E2,lambda) r
2 %NUDFSSG&LAD2C Gradient function for depth from shading and stereo
3 % problem with heirarchical basis functioas. Uses true perspective
4 % projection.
53
6 2 G.MBDFSSGILAD2C(ZN,PAILANS,EI,E2.LANBDA) where Z is the height
7 map, I is the number of N-basis levels. El and E2 are the input
a % images, LANMMA is the scalar seighting factor on departure from

9 % moothness. The image parameters PARANS = [f,b,zO.psl.qsl,ps2,ps21;
10
ii % Clay N. Thompson 2-24-91
12 % Revised 4-3-91 by cut.

13 % Revised 5-10-91 by cut.
14 % Revised 5-19-91 by cut.
is % Revised 4-30-92 by cot for multi-grid scheme

617 Camera constants
18 f - params(1);
19 b = params(2);
20 zO - parmms(3);
21 gama - feb/2/zO;
22 delta = params(12);
23 area - prod(size(z))edeltaedelta;
24
25 2 Light Source positions
26 psi - params(4); qal - pansus(S);
27 ps2 = params(6); qs2 . parsmm(T);
28
29 % Camera coordinate calibration
30 vXI = parems(S); vyl - parAms(9);
31 vz2 = params(lO); vy2 - params(il);
32 vx = (vzl~vx2)/2; vy = (vyl+vy2)/2;
33

34 % Spacial coordinates in image.
35 [rinz! ; siza(z).
36 -,y domain2d(tO:mz-1]odelta+vx+l,[O:.nz-l]edolta~vy4l);
37
38 % Stencils
39 hX [-1 0 1)/2/delta; % X-derivative
40 hy n [1;0-] /2/delta; 2 Y-derivative
41 hxx = [1 -? 1. 2 -4 2; 1 -2 1]/4/delta/delta;
42 %hxy = [-1 0 1;0 0 0;1 0 -1]/4/delta/delta:
43 hxy - [-1 1;1 -1]/delta/delta;
44 hyy - [1 2 1;-2 -4 -2;1 2 1)/4/delta/delta;

0s de12 = (1 4 1A4 -20 4;1 4 1]/6/delta/delta, S
46
47 % Compute p,q using numerical derivatives of z
48 z - hbasis(z,n);
49 zz = cfilter2d(z,hx);
so zy - cfilter2d(z,hy);
51 p - fszx./(x.ezz+z);
s2 q - fesy./(y.ezy+z);
53
54 % Compute reflectance map values.
s5 IL = rmap(p~q,phl,qsl);
s6 R2 - rmap(p,q.ps2,qs2);
s- Rpl p rapp(p.q,psl.qsl);
s9 Rp2 a rmupp(p,q,ps2,qs2);
s9 Rql - rmqq(p,q,psl,qsl);
60 Rq2 - rmapq(p,q.ps2,qs2),
61

;2 % Compute numerical derivatives of z_
63 zzi - cfilter2d(z,hxz);
64 xiy = cfilter2d(z,hzy);
65 iyy * cfilter2d(z,hyy);
66
! % Compute disparity.
es d = (fsb/2)./z;
69 il - (i+d-vzl-1)/delta+1;
7o x2 a (i-d-vn2-1)/delta*1;
71
72 Z Compete lot difference in the x direction of image arrays.
73 e ased en the stencil: -1 1
74 mnil] a size(Ei); [*2,a2] - size(12);

• • • •• • •

0 0 0 00 0 0r 0
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75 stencil -* -1 l/delta. S

76Exi - filter2d(El.stencil,lresize');
Ex2 - filter2d(E2,stencil,'resizo'),

79 Determine stereo sapped image derivatives.
s0 Fit - interpz(EuLI floor(ii) ); zz - zeros(al ni),

:I out = isnan(Fxl); if eny(out(:)). Fzl(out) -zz(out). end
92 Fx2 - intorpx(Ex2.tloor(x2)); zz - zeros(m2,n2);

883 out - isnan(Fz2); if any(out(:)), Fz2(out) - zz(out); and
94

: etrmine stereo mapped images Fl,F2.Sterotozo hreFila
86 Fl - nterpz(El~xl);
s7 out - isnan(Fl); if any(out(:)). Fl(out) a ll(out); end
89F2 - interpx(E2,x2);
89out .isnan(F2), if any(out(:)), F2(out) - R2(out). end

90
91 % Compute Gradient
92 G a zeros(mz~nz);
93 Epli - (Fl-RI) aKlp; EUqi - (F1-Rl) *Rql;
94 Elp2 - (F2-12),eRp2; Dltq2 - (F2-12).eRq2:
9s dens - (z ozx'tz) -2;
96 deny - (y szy+z) -2;0
9- G - -(fob/2)0((F111I).*Fil - (F2-12).o~x2)./(z-2) +
91k f*((E~pl+ERp2).ezx,/denx 4 (EDql+Ekq2).*zy./dony).
99 G(.) - G - cfjlter2d((Elpl+Eltp2).Cz./denxlfehX,'grad');

100 G(1 ) - - cfilter2d((f~lq+D~q2).*z./deoy,-fhy 'grad');
101 G(:) - G + ctilter2d(zxx,lambdaehxx.'grad') +
102 cfilter2d(zxy,2elembdaezy,'grad') + -

103 cf ilter2d(zyy,lamibdasbyy, 'grad'):

1 04 G - hbasis(Go(l/&rea),n.'trans');

B.1.5 hbdfss~cost4.m
I function [J,FRI. F12]hbbdfxss.cost4(v~levels~paremsE.EE2,lambda,mu)
- %NBDFSS..C0574 Cost function for depth from shading and stereo
3 % problem using hierarchical basis functions.- Uses true

4 %. perspective projection end dual z maps.

6 %. .IHBDFSS -CGS?4(V LEVELSPAEANS ,EI ,Z2 LAMBDA.NU) where
. %. V - [zl(:):z2(:)j are the optimization variables, LEVELS is the
s %. number of h-basis levels. El and E2 are the input images, LAMBDA
9 %. is the scaler weighting factor on departure from smoothness end Mu
- %. is the scalerwesighting factor on stereo satching. The image
1; %. parameters are PAEAS - [f~b,zO,pslqslps2,ps2].

il J - [JtotJimage.JsmoothJstereo3
14
it % Clay N Thompson 7-18-91
16 %. Revised to support multi-grid scheme

I-a %. Camera constants
19 f - params(l),
20 b - parwms(2) ;
21 zO - params(3),
22 det parama(12);
23 area prod(size(El))odeltaedelt&.
24
25 %. Light Source positions
26 psi - params(4), qsl - par&=s(5);
2- p*2 - parom(S); qs2 - params(

7 ).

29: % Camera coordinate calibration
30 Yzl - paren(S), vyl - params(9),
31 vz2 - paras~(10); vy2 - params(li);

323 %. Extract zl I z2 end transform into nodal basis.
34 [mzi:,nzl] : size(EI), azl - mzl42. nzl - ntzl*2;
35 Lmz2 ,n2j sixe(92); mx2 - az2+2; a~z2 - nz2+2;
36 zi I zeroo(milnal). zl(:) - v(l:mzlenzl);
37 z2 - zeros(mz2,nx2); z2(:) - v(mzlenzl+(1:mz2$nz2]);
38 zi(.) - hbeais(zl~lovele);
39 x2(:) - hbasis(z2javels);
40
41 %. Special coordinates in image.
42 (xi ,yi] - dosain2d(CO:maszl-Illdelta4'vzl~l ,EO:nzl-1]edelta~vyl~l);
43 (x2,y2] - domain2d((O:mzl-1]edelta~vz2*1 (0:nxl-1]edelta~wy2.1),
44
45 Stencils

46 hx - [-1 0 11/2/delta; %. I-derivative

00
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4' by [ 1;O:-13/2/delt&; % Y-derivative X

:: del2 - [1 4 1;4 -20 4;1 4 12/6/delta/delta.

so % Compute p,q using numerical derivatives of z
si zil : filter2d(xl hi. resize*); zyl a filter2d(zl.hy.'reaiie');

5 2 z12 *filter2d z2.hz,'resizse); zy2 - filter2d(z2.hy,'resize');
53 raws - 2: mzl-, col s - 2:nz1-1;
54 p, - fgzzl(rogs,.)./(z1(rogs~cols) *zxj(rags,:)+x1(rags~cals));
s5 q1 - fozyl(.,cols)./(yl(rav~as z1~cws+1ru~os)
96rage =2:mz2-1. cola - 2: z1.

57 p 2 . fezz2(rogs,:)./(x2(rogs,cals).ezx2(rogs.:)+z2(rogs.cols));
5a q2 - fszy2(:.cols)../(y2(raus~cals) *ry2(: ,cols)gz2(rags~cols));

60 % Compute reflectance map values.
61 Mi - rmap(pl~ql~psl~qsl);
62 12 - rmap(p2,q2.ps2.qs2);
63
64 % Compute interpolated images Set error to zero where zbar is Na.J

69 zbarl - icubxc(xI(l, )',zll,(z2+(f~b)./z2P),;
66 out - isnan(abarl); if any(out(:)), zbarl(out) - z2(aut); end
67 :ber2 - icubic(x2(i. )',z2'.(z1-(feb)./zl)')';
65 out - isnan(abar2); if any(out(:)). zbar2(out) - z1(out). end
69
o0 termi - (0.S/area)*sum(sum((E1-R1).-2 + (E2-&2).-2)); % sfs
-i term2 - (0 5/aroa)elembdaes=m(sum(..
.2 filtsr2d(z1,del2. 'resize').2 + fjlter2d(z2.del2,.resize').2 ): Smooth
-3 teru3 - (0.5/area)emuesum(sum((zl-zbar2).-2 + (zbarl-z2).-2)); %. Stereo
74 7.disp(sprintf('Terms :%12S5f .12.Sf 7.12.Sf1,terul.term2,tera3));

*9I terml~term2.term3.terml term2 .term3J;

77it na~rgout~1.

R2 :f [ E1;1k1;abs(E1-1)
79 Ff =12;12;abs(E2412)

so end

B.1.6 hbdfss~grad4.m
ifunction G-hbdfss..grad4(v~levels~pareas.11 .E2.lambda,mu)

2 %.UDFSS-G3.AD4 Gradient function far depth from shading and stereo
3 %. problem using hierarchical basis representation. Uses true *
4 %. perspective projection and dual z maps.
%7
%. G-KEDFSS -GLAD4(V LVELmS,PAIARS.Kl,12.LAXRDA,NU) there

7.% V - Czl(.);z2(:)I are the optimization variables, LEVELS is the
7.% number of h-basis levels, El aind E2 are the input images, LAMSDA
7. is the scalar weighting factor on departure from smoothness and NU
%o7 is the scalar weighting factor on stereo matching. The image

11. parameters are PARAAS - [f~b~zO~ps1,qs1.ps2,ps2).
12
%. Clay A Thompson 7-18-91

14'

is %. Camera constants
16 f - paraMS(1);
i- b - params(2);
is zO - params(3),
19 delta *params(12),

2o area =prod(size(S1))Odoltaodolta;

21
22 %. Light Source positions
23 pat - paremm(4), qsl - params(S);
24 ps2 - parems(6); qs2 - params(7);
25
26 %. Camera coordinate calibration
2' vil - parism(S). vyl - parems(9);
26 vz2 - parsm(10). vy2 - parmas(11),
29
30 %. Extract zl1 & 2 and transform into nodal basis.

31 fmulnzlJ - size(E1); mz1 - %u1+2. nILI - nui42;
32(zz2J - size(92); mz2 - mz2+2; nz2 -nz2*2;

33 zi - zeroa(mal,nul); zl(:) - (:znl)
34 z2 - zeros (az2,ns~2); z2(:) - v(&ulenzl*(1:mZ2enz2J);
35 z1(1) - hbasis(zilolvels),
36 z2(:) - hbasi~s(z2,1evels);

3%7 Spacial coordinates in imege.
39 [ul~yl] - domaan2d(tO:mzl-1]sdelta*vxl~l,[0;nzl-l)edelta~vylel);
40 [x2,y2) - domain2d((0:mzl-lledelltaevz2*ld[O~nzl-1]edelta~v'y241);

42 Stencils
43 hi - [-1 0 11/2/delta; % 1-derivative

0 0 0 00000 *
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44 hy - [1:0;-1]/2/4elta, % Y-derivatxv* X
45 4e12 - [1 4 1;4 -20 4;1 4 1J/E/delta/delta; % Laplacian
46
4 %. Compute p~q using numerical derivatives of z
4s zi : filter2d(zl.hx. 'resize'). zyl - filter2d(zI,hy.'resize');
49 zz2 filter2d(z2.hz, 'resize'), zy2 -filter2d(z2.hy,'resizs').
s C row: ; 2:mzI11; cola = 2:nzl-l;
5 p1 fzxl(rous.:./z(rows.cols)..zzl(rows,:)'ezl(rows.cols)),
,2 q1 - feozyl( cols) /(yl(rows,cols) *zyl( .cols)+zI(rows~cols)).
51 rows - 2 mz2-1; cola - 2:nz2-1.
'A p2 - fezx2(rows, )./(z(rows.cols) ozz2(rows. ).z2(rous~cols)).
55 q2 - fozy2(. cols)./(y2(roww,cols) ezy2( ,cols)+z2(rows,cols)),
56
5- % Compute reflectance map values.
5s RI - ruap(pl~ql,psl,qsl);
59 RIp a rmapp(pI,qI~psIlqsl). Rqi - rmapq(pl,ql~psl,qsi),
60 3.2 a rmap(p2.q2,ps2,qs2).
6' ftp

2 
-rmapp(p2.q2,ps2.qs2), Rq2 - ruapq(p2.q2,ps2.qs2);

62
63 %. Compute interpolated images and related terms. Set gradient to zero where zbar is gas
64 d -(fob) /Zl:

66 out -find(isnan(zbar2));
6- z barz2 - dcubicx(x2(l..)',z2' ,(xl-d)')'Idelta.
6A if length(out)>0. zbar2(out) - zl(out). zbarx2(out) 0* Oz(out), end
69 zbarz2 - dcubicz(x2(1,:)'.z2'.(x1-d)'.(zl-zbar2)')';
-o

81 d (fob),/z2:
-2 zbarl s icubic(zl(l..)'.zl',(z2*d)')',
3 out a find(isnan(zbarI));
-4 Zbarxl - dcubicz(xl(,. )',zl',(z2+d)')'/delta;
-,if length(out)>0, zbarl(out) - z2(out), zbarxI(out) O* z2(out). end0
-6 zbarzl - dcubicz(z1(1..)'.zl',(z2+d)'.(zbarl-z2)')',

-s. Compute error terms
-9

8o %. low form gradient
;1 rows - 2m:z i-1; cola - 2 :nzl-1;
62 EUp a (El-Rl). dpi; E3q - (El-Il),wiqI;
a3 denz - (zl(rows,cols).ezxl(rows,:)*zl6.rows~cols)) -2;
s4 deny - (yl(rows~cols).ezyl(.,cols)*zl(rowsscols)).-2;
s5 didzl - zeros(mzl~nzl);
s6 dldzi(rows..) - -filter2d(RIP ezI(rows~cols)./denz.-fehz),
8- dJdzl(.,cols) - didzl(:,cols) -..
6R filter2d(Enq 0zI(rovs~cols)./d~ny,-fehy);
A9~ dldzI(rows.cols) - dJdzi(rous,cols) +
9r fe(Elp ezzl(rowss)./denz + EUq.ozyl(. cols) /deny),
9i didzl( ) - didzl +
92 leabdaefilter2d(filter2d(zl~del2, 'resize'),del2) +
94' mue(z1-zbar2).e(1-(fwb)ezbarz2 /(zl.-2V
14 muszbarzl,

96 rows - 2maz2-1. cola - 2.nz2-1.
9- Ep - (E2-&2) e3.p2, U~q - ME-92) *Rq2.
95 denz - (x2(rows~cols).szz2(rows, )+z2(rows~colsfl '2.
99 deny - (y2(rows~cols).*zy2(.cols)+z2(rows,cols)).-2,
i00 d~dz2 - zeros (mz2. nz2) ;
in1 didz2(rows, ) - -filter2d(ENp.ez2(rows~cols)./denx.-fehz);
102 dldz2(..cola) - dJdz2(:.cols) -
103 filter2d(KUq.ez2(rows,cols) /deny,-fohy).
104 dldz2(rows,cols) * didz2(rows,cols) +
101, fe(Eip szx2(rows,:)./denz + Eftq *zy2(. .cols)./deny).
:o6. didz2( ) - dJdz2 +

:- lembdeetilter2d(filter2d(z2.deil2, 'resizes'),del2)-
;3A muoxbarz2 -,
179 muo(zbarl-z2) e((feb)0zbarxl./(z2.-2)+l),

:i; %. &*turn gradient in h-basis coordinates
112 dldzi - hbasis(dJdzle(1/azrea),levels,'trans'),
113 didz2 - hbasie(didz2e(1/area),levels,'trazns').
114 G - (dJdzl(.).djda2(:)],

B.1.7 hbdfss-.cost7.m
i function (J,Fk1,Yl2]Jhbdfss..cost(u~n,parms.E1.E2,lanbda)
2 7.MDDFS..COST7 cost function for depth from shading and stereo
I7% problem with heirarchical basis functions. Uses true

4 %. perspective projection.

6. %. J-NDFSS..CCST7(U,3.PAIUS.E1 .32.LANDDA) where U is the disparity,



0

140 APPENDIX B. M-FILE LISTINGS

7 ehad I is the aumber of H-basis levels El and E2 are the input
8 im aes LANIDA is the scalar weighti~ng factor ons departure from

9 % oo s o.sthn!eL .he image parameters PARANS - [f,b~zO,pei.qsi~ps2.p*2J.
10 %
1 1 % .J- titot.Jimag*,Jmoothj.
12
1 3 % Clay N. Thompson 5-23-92
14 % Uses u * fb/2z - fhl2z_.0 to enhance the numerical stability of the algorithm.
15 % Revised to support multi-grid scheme

17% Camera constants
is f - params(l);
io b e parema(2);
20 z0 - parsmj(3);
21 uO - fsb/2/zO;
22 delta =params(12);
23 area *prod(siie(u))0daltaodelta;
28
25 % Light Source positions
26 psi - parame(4); qsl - parems(S);
2- ps2 - parame(6); q@2 - Parana(?);
28
29 % Camera coordinate calibration
30 viii - parana(W) vyl - parms(9).
31 vz2 a parwme(1O); vy2 a parems(ll);
32 vi a (vxl*vit2)12; vy 0 (vyl4~vy2)I2;
33
354 % Spacial coordinates in image.
35(s~z size(O).
36x yJ"] e ouain2d(tO:nz-lledelta~vm~l, (0:nz-lledelta~vyo'l);

38 % Stencils
39 hi [-I (- 0]i/(2:delta); % X-derivative,
40 hy 1:0 1;. Ml 2delta): ; 7-Yderivative

41 his [ 1 -2 1, 2 -4 2; 1 -2 WJ(40deltaodelta).
42 Zhzy . [-1 0 1;0 0 0.1 0 -11/(4ed~ltAedelta);

43 hzy - [-1 1:1 -1J/(deltaedelta);
44 hyy 0 Cl 2 i;-2 -4 -2;1 2 lJ/(4sdeltaedelta);
45 d*12 - [1 4 1:4 -20 4A1 4 l]/(60deltaodelta);

:6 Compute p,q using numerical derivatives of u.
48 u basis(u~n);
49 u1s *Cfilter2d(u,hx);
50 uy cfilt r2d(u~hy);

52 q f twy A(y Suy-u-uo);

5s4 % Compute reflectance map values.
55 Ri - rmap(p.q,psl,q*1);
56 R2 - rmap(p,q~ps2.qs2);

158 % Compute numerical derivatives of u.
59 uss cfilter2d(u,hzz);
s0 airy eclilter2d(u~hxy):
61i uyy acfilter2d(u~hyy);

6263 % Determine stereo mapped images FI.F2. Set error to zero where F is lam
64 F1 - nep(I(~~Ovll/etn)
65 Out - iGnan(F); if anY(eet(A)). Wlout) - Wanot); end,
a6 F2 - interpt(152.(s-u-eO-vs2-1)/delta~l);S
6- out - ienaM(F); if any(out(A). M2oat) -R2(out); end,

70
71term) 0Saelsm~u(F-l (F2-R2) -2)):

72 terM2 e(0.S/area)elambdae(som(sum(uzxs 2)) + 285um(eum(uzy.-2)) + eum(eum(uy -2))),
.3 %term2 e(0.5/area)eoambdaeeum(eu(delsqz.-2));

74 %disp(sprintf('Term : %12.S1 712S5f'.termi~term2));
.5 1 - [terml~tsnm2, termi, term23:
76
"1 if sargout)'1.

79 12 e [2:F2;R2;abs(?2-R2)j:
80 sad

B-1.8 hbdfss..grad7.m
I fenctioa 4bOebfss..pad(u s,nparmu .51.52 lambda)
2 7JBDSGRAD7 Oradient fenction for depth fro, shading and stereo
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32 problem with heirarchical, basis functions. Uses true perspective
4 2 projection.

4~ %2
6 % G.KSLDFSS..GUD7(U,,PAIARSElEi.2.LhNSDA) whore U is the disparity
% mna, iad I is the number of H-basis levels. 11 and E2 are the input

a % images, LAMBDA is the scalar weighting 'factor on departure from
9 % Smoothness. The image parameters PARAMS - [f,b,z0,psl,qsi,ps2.ps2);
10
ii % Clay N. Thompson 5-23-92
12 % Uses u - fb/2z - fb/2z..O to enhance the numerical stability of the algorithm.
13 % Revised to support multi-grid algorithm

I s % Camera constants
1 6 f parems(1);
I b =parems(2);
is x0 a params(3);
19 uO - feb/2/zO;
20 delta *params(12);
21 area *prod(size(u~)Cdelta~delta;
22
232% Light Source positions
24 psi - parama(4); qsl - params(S);
25 ps2 - paraus(6); qs2 - parems(7);
26
2- % Camera coordinate calibration
28 vii - paremo(S); vyl - params(9);
29 vi2 - parae(10); vy2 - parems(l1);
30 vi (wzl~vx2)/2; vy - (vyl+vy2)/2,
31
32 % Spacial coordinates in image.
33 [m~z ize(u)
34 [fi. y] = dosain2d(tO:ai-l)Cdelta~viil [0:sz1)l*delta~vy~l);
35
36 % Stencils
Y, hi - [1 0 1)/2/delta; % 1-derivative
38 hy - [-1;0;-1] /2/delta; % Y-derivative
39 hii [ 1 -2 1; 2 -4 2; 1 -2 13/4/delta/delta;
40 %hi) [ -1 0 1:0 0 0;1 0 -1J/4/delta/delta;

041 hxy [ -1 1;1 -1)/delta/delta;
42 hyy *[1 2 1 ;-2 -4 -2;1 2 1)/4/delta/delta;
43 del2 [ 1 4 1;4 -20 4;1 4 1]/6/delta/delta;6
44
45 % Compute p.q using numerical derivatives of z.
46 u =hbasia(u~n);
47 gu U u *uO;
441 II cfilter2d(u,hz);
49 uy =cfilter2d(u.hy);
5,0 deal - (z.ouz-uu);
51 deny - (y.*uyuuo);
s2 p - fear./denx;
53 q - feuy./deny;
54

55 % Squared denominators for gradient terms bolow
56 dea:(:) - deni~edear;
57 deny(:) - deny.odsiny;

19: % Compute reflectance map values.
60 &I a rmap(p,q~psl,qst);
61 R2 - rmap(p,q,ps2,qs2);
62 IpI - rma W(p~q,psl,qsl);
63 Rp2 a rmapp(p,q~ps2,qs2);
'4 341 - rmapq(p,q~psl,qs1).
as 342 - rnmpq(p,q~ps2.qs2);
66
6 % Compute numerical derivatives of z.

o4 xz a cfilter2d(n~hii).aa uy - cfilter2d(u~hy1),
70o uyy a cfilter2d(.,hyy).
71

72 % CompIAt image projections.
'3 x1 - (:.ouw-vzl-1)/4elta*t;
74 x2 - (z-uu-vx2-1)/dslta*1;
'5

76 % Compute 1st ..i-fterence in the x direction of image arrays,
7T % Basned on the Stencil: -1 1

?amLl all : sie Ea;C2.n2] a size(92).
79 Stenc il I -11/delta;

so 3:1 filter2d(31.steacil.'resize');
ii 3:2 *filter2d(3t2.etencil,'r~aiz*e);

52
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83 % Determine storeo mapped image derivatives.
84 Fzi - intsrpz(Zzl,floor(x1)); zz - zeros(ml~nl);0
as out a isnaa(Fzl); it anty(out(:)). Fzi(out) - zz(out); end
86 Fz2 - isterpz(Kz2,floor(z2)); 22 * zeros(m2.n2);
ar out a isnan(Fz); if any(out(:)). Fz2(out) - zz(out); and

88a89 % Determine stereo mapped images Fl.F2. Sot error to zero shere F is IaN
90 Fl - interpi(EI,xl);
oi out - isnan(FI; if azly(out(:)), I'Iout) - 11(out); end
92 F2 a interpz(312.z2);

9 3 out a isnan(F2); if any(out(:1), F2out) - Wesot); end
94

91 % Compute Gradient
96 G - soros(mz,nh);
97 Elkpi - (F-1l)eskpl; 9Dqi - (FI-R1l).e.ql;
96, Elp2 - (F2-&2) elp2; ED4 2 - (F2-12).01~q2;
99 G - ((FI-1l).*Fzl - (F2-12).*Fx2)..

100 -f*((Zlpl*UMp2).euz./deflz + (flql~glkq2) .euy. /deny);
101 a(:) Q + cfilter2d((flpl+Eltp2).euu./denxLeh-oiz'grad');
m0 G(:) G + cfiltor2d((U~ql+U~q2).*uu./dofly,-fohy,'grad');
103 G(:) G +2 ctilter2d(uuz~lambdaebzz, grad') +
104 cfilter2d(uxy.2el*mbdaehxy. 'gad')*
101 cfilter2d(uyy,lambdaehyy, 'grad');

1 06
107 0 - hbasis(G$(1lare&),n,'traas');

B.1.9 hbdfss-.cost8b.m
ifunction (J.I,Ftl,2juhbdfss-.cost(v~n~paroms.1l ,12,lambda~su)

2 %X3DFSS..C0STS3 Cost function for depth from shading sand stereo
3 % problem with heirarchical basis functions. Dses true
4 % perspective projection end varying albedo

6 i JNBDFSS..CDS?83(V..NPAIANS,91,12,LAMDA.NU) whore Ve(Z,iig) are
% the optimization variables (height and albedo), I is the number of

% N-basis levels.. 11l and 12 are the input images. LAMBDA and NU are
% scalar weighting factors on departure from smoothness for height

io % and albodo. respectively. The image parameters PAEANS a
n1 % (fb.bzOpsl~qsl.ps2.ps2].
12 %
13 % 3= titot,Jimage,Jsmooth.Jalbedo3.
14
15 Clay N. Thompson 6-28-92

16
i- Camera constants

is f . parmws(l);
19 bs - params(2);
20 zO - paremss(3);
21 gona - feb/2/20;
22 delta - parains(12);
23 area - prod(size(El))edeltaedelta;
24
21 % Light Source positions
26 psl - parem(4); qsl - params(S);
27 ps2 - paroei(G); qs2 - params(V);
28
29% Camera coordinate calibration
30 V11 - Parý(8); vyl - params(9);
31 vx2 - perswa(l0); vy2 - parmsa(ll);
32 vx a (vzie'v2)/2; vy - (wyl~vy2)/2;
33
34 % Spacial ceordinates in image.
35 [M n2) 8 size(Z1);
36 z a (,ln) rho - v(- nz+(l-nz]);
37 [xzyJ a demas2d(0:mxin-jedelta~vz.1 [0:nLZ-leodelta~vy.1).
38

40 :z J -i 0 iJ/(2edelta); % X-derivative
41 hy 1; l;0-lJ/(2*deta); % V-derivative
42 hazz [ 1 -2 1; 2 -4 2; 1 -2 l]/(4*dsltaedelta);
43 1hZy a [-1 0 1;0 0 0:1 0 -1]/(4odeltaodolta);
44 hzy 0 [-1 1;1 -13/(doltaedolta);
45 hyy - [1 2 1;-2 -4 -2;1 2 W)(O4edltaedelta);
46 del2 7 [1 4 1A4 -20 4;1 4 l]/(Sedeltaedealta);
47 hr a (0 0 0;0 1 0:0 0 01 - ones(3.3)/9;

#9 Compute p~q aging numerical derivatives of z.0
so a a hbasis(azn); rho a hbasis(rho~s);
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52 Zy cfilter2d(z.hy);
53 p .fouz./(z.ozz*:);
54 q - foxy./(y.*z~y~x);
55
s6 % Compute reflectance map values.
57 &1 - rho.*rmap(p~q.pslqsl):
s: 12 - rho.eruep(p~q~ps2,qs2):
59
60 % Compute numerical derivatives of z.

:i zxx cfilter2d(z~hxzx);
62 ZIy cfilter2d(x~hxy);

63 zyy *cfilter2d(z,hyy);
64

65 % Compute disparity.

66 d - (feb/2).Iz;

68 % Determine stereo mapped images F2,F2. Set error to zero there F is Ban
69 Fl = nep(I(e-vl1/et*)

70ot - issam(F1); it any(out(:)), F1(out) - Wenot); end,
ý71 F?; = iaterpz(32,(z-d-vi2-1)/delta~i);
72 out - isnam(F2); if any(out(:)). F2(out) - W2out); end,
,37
74 %image([F1.72;R1,123.O 11,S)
75
76 terml - (0.5/aroa)esum(smm((F1-11).2 + (F212).-2));
77term2 - (0.S/area)elambdake(sum(sum(izx.2)) + 2*sum(sum(zzy.-2)) + sin(sum(zyy-2)));

78 term3 a (0.5/area)emueaum(sei(cfilter2d(rho.hr).-2)):
79 %1t.r.2 - (0. 5/ara)elambdaeium(sin(delsqz.-2));
80 %disp(aprintfU'Term: 212-Sf %12.5f %12.Sf' .terml,term2,term3));
81 J - Cteral+,ter324term3,ternl ,term2,term3J;
82
83 if nargout>1,

84 FR (Es1;FI;11;abs(F2-42)];
85 F12 a E12.F2.32.aba(F2-12)J.

B.10.10 hbdfss-grad8b.m
ifunction Getibdfos-.grad(v ,n ,perms .3112, lambda mou)

2 %9DDFSS.,03AM3 Gradient function for depth from shading and stereo0
3 % problem with heirarchical basis functions. Uses true perspective
4 Z projection and varying albedo.

% 2 6NUDFSS..OIADaB(V,l,PAIANS.EI,E2,LANSDA,mJ) where V(CZ,3IO] are
% the optimization variables (height and albedo). N is the number of

a % H-basis levels.. 91 and E2 are the input images, LAMBDA and RU are
9 % scalar weighting factors an departure from smoothness for height

10 2 end albedo, respectively. The image parameters PARAMS
ii % (f~b,zO,psl,qs1,ps2,ps23.
1 2
13 % Clay M. Thompson 6-28-92

15i % Camera constants
16 1 - parmams(1);
17 b - parems(2);
18 zO - params(3);

19 giame a feb/2/20,
20 delta a params(12)
21 area - pred(size(SW))deltaodelta;
22
23 % Light Source positions
24 psi - parems(4); qsl - params(S).
25 pa? a perams(8); qs2 a perams(7);
26
27 % Camara coordinate calibration
28 vii - porSA(B); vyl a params(9);
29 V12 a paramm(10); vy2 - parmas(11);
30 VS . (vzilvi2)/2; vy - (vyluvy2)/2;
31
32 % Spacial coordinates in image.
33 EM 03) 8 sise~il);
34 aC v(:,1:us); rite a v(' RZj1-aj)-
3s 1zy] * demiai2d( CO:ms-'iedelta&4.vZ41.(0:ns-1]edelta~v741);
36
37 % Stencils
38 h1; W O-H ]/2/delta; % 1-derivative
39 by e1;0;-1] /2/delta; % T-derivative
40 hzz [ 1 -2 1; 2 -4 2; 1 -2 11/4/deltadelta.
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41 2bay - (-1 0 1;0 0 0;1 0 -1]/4/dolta/delta,
42 hay - (-1 1;1 -1J/delta/delta;
43 hyy - [1 2 1;-2 -4 -2;1 2 1]/4/delta/delta;

44 4.12 - El 4 1;4 -20 431 4 1]/6/delta/delta;
4s hr - [0 0 0;0 1 0;0 0 0) - oaes(3,3)/9;
46
47 % Compute p,q using numerical derivatives of z.
4: a b basis(z~n); rho - hbasis(rbo,n);
49 Zx cfilter2d(a~hi);
.'o zy =cfilter2d(a,by);
51 p *fezx./(z.ezz+z);
52 q *fSZY./(Y-szY+z);
S3
54 2 Compote reflectance map values.
s5 111 a rmap(p,q,pol,qsl); M1 - rhoelRl;
s6 312 - rwap(p,q~ps2,qs2); 12 - rho-e3.2;
57 1p1 - rho.ormapp(p,q~psl~qsl);
5a 3p2 - rho.ermep(p~q,ps2.qs2);
59 I~qi a rho-ermapq(p~q,pel.qsl);
60 3q2 - rho. ormapq(p,q,ps2,qs2);

62 % Compute numerical derivatives of Z.
63 zxx - cfilter2d(z,h~zx);
64 217 - cfiltor2d(z,h~zy);
65 377 . Ctilter2d(z,hyy);
66
67 % Compute disparity.
6s d a (febl2)./z;
69 11 ( (zd-vil-1)/dolta*1;
70o x2 - (x-d-vz2-1)Idelta~l;
71 0
72 % Compute 1st difference in the a direction of image arrays.
73 % Basned On the stencil: -1 1
74 (ml,ni] - size(Kl); [m2,n2J - size(32);
75 stencil - [-1 11/delta;
76 Klx - filter2d(g1,stencil,'resize');
77 -1 filter2d(R2,stencil,'resize');
75
79 % Determine stereo mapped image derivatives.
so Fat - interpx(1sl.floor(x1)); as - zeres(m1.nl);
si out - isnan(Fxl); if aay(out(:)), Fxl(out) - zz(out); end
62 Fz2 - interpz(Ex2,floor(x2)); an a xeres(m2.n2);
63 out - isnan(Fx2); if eny(out(:)), 7x2(out) - zz(out): end

64
55 % Determine stereo mapped image& 71 .72. Set error to zero where F is Bal
56 F1 - interpz(E1,xi);
a7 out - isnea(FI); if eny(out(;)), F1(out) - 91(out); end
as F2 - interpz(12,z2);

69. Out - isnan(F2); if any(out(:)). M2ost) - 12(out); end

91 % Compute gradient
92 711 - (Fl-al); 712 - (72t2)
93 3191 - 711. eplpi Dql * 11 eql;
94 flp2 a 712.61p2; 13q2 *F12.e1q2;
9s deni - (x.ozxxz).-2;
Be deny - (y.oxy4').-2;
97 Ox - -(feb/2) o(n11. oral - n12.eFx2). /(z - 2) +
9s f*((flpl.51p2) .ezz./deax *(URqleSM2).ezy./deny);
99 as(:) - 4z - cfilter2d((Ulpl431p2).ezj/denx.-fehx, 'grad'):

100 Gx(:) - On - cfilter2d((U~qlfl~q2).ea./deny,-fohy,'grad');
101 oz(:) a0 oz cfiltor2d(axx~lambdaohxx,'gred')*
102 cfilter2d(zay,2elmbdaehxy. grad') +
103 cfilter2d~zyy,lambaebyy, 'grad');

1 04
los Orho - cfilter2d(cfllter2d(rho.hr),muehr,'grad') -R-U 7F.31 12.0112;

1 06
.07 Oz - hbasis(Oze(1/area),n'1trens');
105 Orho - hbauis(Grhoe(1/area),n,'trens');
lot a a [Gz,Grboj;

110

B.1.11 hbsfs...cost.m
i function [3fJ, n mbsto-cest (z, levels, paraw, , lmb"a)
2 UIMFS Cost function fer shape from shading using hierarchical
3 % basis functions. Basned on orthographic projection.
42%
s2 J*NUFS7SCOST(Z,LZYELS.PA1ANI,3LAMfA) where Z is the depth map,0

a 2 ZV Is3. the number of h-basis levels, I is the Input Image, end
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S% LNEADA is the scalar weighting factor on departure from
a % smoothaess. The image parameters are PARANS = [f,b.zOps.qs].9

10 % Clay N. Thompson 12-16-91

12 % Camera constants
13 -= param,(l);
14 b - params(2);
15 zO a params(3);
56 delta = params(12),
1; area = prod(site(z))edeltaedelta.
18

19 % Ligs Source positions 0
20 pa = params(4); qs - params(S);
21
22 % Extract zl A z2 and transform into nodal basis.
23 [m=,az] - size(E); mz - m=+2; uz = nz÷2;
24 z hbasis(x.levels);
25
26 % Stencils
27 hM (f/zO)*[-1 0 1J/2/delta; % Z-derivative
28 hy * (f/zO)o[1;0;-1]/2/delta; % Y-derivative
29 del2 - [1 4 1;4 -20 4;1 4 1]/6/delta/delta; % Laplacian
30
31 % Compute p,q using numerical derivatives of z.
32 rose - 2:mx-1; cola - 2:nx-1;
33 p - filter2d(z,hn,'resize'); p = p(rovs,:);
34 q a filter2d(z.hy.'resize'); q = q(:,cols);
15
36 % Compute reflectance map values.
37 I = rmsp(p,q,ps,qs);

3 termsi (O.S/areao)sum(su=((E-l).'2)); % sfS •
40 term2 a (0.S/&roa)Olambdaosum(su( filter2d(z,d*12,'resixe').'2 % smoothness
41 %disp(sprintf('Terms: 212.Sf 212.Sf',term1,term2));
42 3 = [terfl+terM2,terml,term2];
43
44 if nargout>l,
45 F1 - EE;l;abw(E-l)];
46 end

B.1.12 hbsfsgrad.m
Sfuction 0osbsts-grad(z, lovels,parsms Z, lambda)

2 2NBDFSS.GIAD4 Gradient function for shape from shading using
3 % hierarchical basis representation. Based on orthographic
4 % projection.
52%
6 % GIBSFS.GIAD(Z.LVELS,PAIAkS,ELANUDA) where Z is the depth map.
- LEVELS is the number of h-basis levels. K is the input image, and
s 2 LANIDA is the scalar weighting factor on departure from 0
9 % smoothness. The image parameters are PABRAS - [fb,zO,psqs].

10
.i 2 Clay R. Thompson 12-16-91
12 % Revised to support multi-grid scheme.
13
14 % Camera constants
15 f a params(i);
16 b - parms(2);
17 ZO a parsms(3);
1i delta - parsB(12);
19 area a prod(size(z))Odeltaudelta;
20
21 % Light Source positions
22 po - pare-.(4); qs - parms(S);
23
24 2 Extract Zl A s2 sad transform into nodal basis.
25 ma,ua] e size(g); ma - min2; nz - nz÷2;
26 z a hbasis(2,levels);
2?
28 % Stencils
29 h (f/aO). -i 0 1 /2/delta; % X-derivative
30 hy _ (f/aO)o L;O;-1J/2/delta; % Y-derivativo
31 de12 - [1 4 1;4 -20 4;1 4 1)/6/delta/delta; % Laplacian
32
33 % Compute pq using amrical derivatives of a.
34 rows = 2:ms-?; colS a 2:a-1;
35 p 5 ftltsr2d(x,kx,'renise'); p a p(rows,:);
36 q t filter2d(z,hy,'resise'); q - q(:,cols);
3? del2a a filter2d(z,del2,'resixe'); S
38

00

0 • 0 0 0 0 0 0 0
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39 % compete reflectance map values.
40 It - ru~ap(p.4q.p6.q9) ;
41 Ap - rXApP(P.q.p$.qs); 4q - rMapq(Plq,p&1qs);

4 2
43 % Compute error terms
:4445 % son form gradient
46 a - zeroost~m~n);
47 G(rows,:) =filter2d((E-I).eftp,hz);

4: 0(:.cols) 0 (:.cols) + filtsr2d((E-R).eRq,hy);
49G(:) *6 laMbdaefilter2d(del2z.del2);

so
si % Return gradient in h-basis coordin~ates
52 G - hbasis(00(1/area)lIevels.'trans').

B.2 Support routines.

B.2.1 rmap.m
i function Ieruap(p~q~ps,qs)
2 2NRAP Reflectance map calculation
3 % IeIRAP(P.Q) computes the reflectance map image of the surface with

2 the gradients P and Q (in the z and y direction respectively).
s % P and Q are matrices that contain the gradients over a rectangular
62% grid.
72%
a % £=BIIAP(P,Q,P&.Qs) uses the light source direction (Pseqs).
92%

10 % Currently implements: Lambertiant reflectance

2 2 if nargin-2.

143 ps=.1; qs - .1; % Light source direction

15116 (n~m] *size(p);
17 a - maz( (1*psep+qseq) ./ sqrt(l.p.epi.eq) J1 sqrt(1epseps..qsoqs)..

I9 zeros(n,m) )

B3.2.2 rmapp.m
i function apwrmapp(p~q,ps~qs)
2 2IRAPP Reflectance map partial derivative calculation
3 2 apeaNAPP(P,Q) computes the reflectance map X partial derivative of

2 the surface with gradients P and Q (in the x and y direction
2 respectively). P and Q are matrices that contain the gradients0

6 2 over a rectangular grid.
72
% aPONNAP(P.,qPS,Qs) uses the light source direction (PsQs).

92%
10 % Currently implements: Laubertian reflectance
11
12 if nargis-2.
13 ps =.1; qs a .1; % Light source direction.
14 end
25
26 (nam] -sise(p);
17 d a onos(a,m) + pe*p + q-eq;
is a - oaes(s.8) + peep + qseq;
19 ap *(pe e. p J1 d ) J1 sqrt(d) 41 sqrt(1*pseps~qseqs);
20
21 adz efisd(rmap(p~q~ps,qs)--O);
22 if leAgth(adx)>.O, lp(adz) - zeros(lsngth(ndx).1); end
23

B.2.3 rmapq.m
i function Iqermapq(p.q,ps,qs)
2 %fhUM Reflectance map partial derivative calculation
3 2 Zqe3R*P(P.Q) competes the reflectance map Y partial derivative of
4 % the surface with gradients P and 4 (in 'the x and y direction

2 respectively). P and Q are matrices that contain the gradients
e 2 over a rectangular grid.
72%

00
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% A qsSMPQ(P,Q,Ps.Qs) uses the light source direction (PegQs).

10 % Currently implement@: Lambertion reflectance

12 it nargiau-2,
13 p5 .1; cis a .1; % Light source direction.
1 4 end
1 5
16 (nm.8= size(p);

17d*ones(n,m) + pe0p + q.eq;
:3s ftwons(nt~m) + peep + qseq;
19 Rq =(qs - o -e q / d) J1 sqrt(d) J1 sqrt(1+psep~s~qqs);
20
21 ndi find(rmap(p,q,ps,qs)--);
22 it lsngth(ndx)>O, Aq(ndx) - zeros(length(ndz),1); end
23

B.2.4 conjgrad.m
,function (z, onions.j, history] oconjgrad(IUN x, OPTIONS,.GLAD...

2 P1,P2,P3,P4,P5,PG,P7,PS.P9,P1O)
3 %CONJGIAD Conjugate-gradient optimization.

s % I CONJGNAD('FUU',X0,OPTIONS,'GIAD') finds the miniarm of the
6 % function 'FUN' I ith gradient 'GRAD' using a Conjugate-gradient
7 % optimization algorithm. X0 is an initial condition. OPTIONS is a
s vector that contains optional information for the optinizer (see

9 % FoPioNS) . 'Fun e nd 'GRAD' are strings that contain the nams of
10 % the cost function and gradient N1-files, respectively. 'FUN' should
ii % return a scalar function value, f-FUNWz. 'GRAD' should return the
12 % gradient vector (df/dx), g - GROW~z.
23 %
14 % Up to ten parameters can be passed to 'FUN' and 'loaD' using I
is % CON3G3AD( 'Iux '1O.OPIONS, 'g1ad'1,Pl,P2,....) So 14UN(z,P1.P2,...
16 % end gmGJAD(z.P1.P2,...).
17
18 a N ots: FUNCTION value is returned in OPTioNS(S) end gradient value
19 % is returned in OPTIONS0l5). OPTIONS(19)-Kistary save rate.
20
21 % Clay N. Thompson 2-4-91
22
23 tol - 1.0ed; % Ninismom allowed alpha
24
25 error(nargchk(4,14,nargin));
26
2' % Form call strings.
28 paraw - 0.;
29 for n5S:nargin
30 pjarams - Eperams I.P'.imt2str(&-4)];
31en0
32 if -any(FUN(48), fcall U FUN.'(z' params.0)'; else Icall *FUN; end
33 it eany(GRAD<48), gcall [OROIA,''pas,)L alse gcall - GRAD; end
34 if -ssy(FUN(4),
35 LPAN.A [3;0
36 for n=5:nargin.
37 LPARAN t LPAIAN, ',P',int2str(n-2)];
38 end
39 SEARC31 EI'eval(''zPl~zeP2;''),',FUN.'(z'.LPANA,)]]
40 elSe
41 SKA1CN - ('Ceval(''z.-P1~*zP2;'I') , ',FuN,''3;
42 end
43 linecall a E'lsearch(SEABCU.0,2ealpha,f,GRAD,z~pph'params,')']
44

45 "Wars - lesgth(z(:));
46 Em nz] a size(z);
47
46 % Initialize parameters
49 beta - 0;
IV f - eva.I(fcall); % Function value
51 fold a *
52 gk * eval(gcall); % gradient
53 ph a zeres(mz~az); % Search direction
54 gknorm mesrm(gh(:));
55 OPTIONS *foptiOaS(OPTIONS);
56 OPTIONS(10) - OPTIONS(1O) + 1;
s7OT oNris(11) aOPTicNs(1) + 1;
so if oPTiUN(1S)-lo, alpkao.Oi; else, alpha =2COPTONS(1S); sad % Initial guess

59 if sitg~siez rrer('The size of the gradient and x dou''t match.'); end0
61if oPTions(i))
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62 diap('Fus. tyvals -- Value --- Stepsize -- Gradient');
63 disp(Coptiatf('25.Of 212.3g %12.3g ',OPTIONS(1O).f(l),OPTIONS(lS)),

64 sprintf('%12.3g ',Sknorm)]);
65 end

66 if OPTIONS(19)0 I nargout)3,4
6- history - (OPTIONS(lO) ,f ,OPTIE(1O) .ghnoruJ:

69en

,0 while OPTIONS(1O)(OPTIONS(14),
71 % Tost for convergence.
72 if ghnorU(OPTIaNS(2).
73 OPTIONS(S a f(1': OPTIoNSQS) a ghpors:
74 disp('Gradient criteria met.'), break
75 end
76 if OPTIONS()0,
7'7 ph - -gk + betaeph; % Compute search direction.
79 also
79 ph , -gk;

8 0 end
I1

62 % Do ano inexact line search to determine, alpha.

63 G&ADS a j(:)'epk(:); 0

84 if GRAD 0.
as ph - -gk; GILD
86 if OPTIOIS(L)>O. disp('Nedirect search.'), end,

67 end
8 (alph&,f ,n,how] a eval(linecall); % Line search

90 OPTIOES(IO) - opriona~o) +*n;
91 OPTIonS(I) a alpha;

92
93 x - x + alphaspk;
94
9s if alpha~tol.

% ghold - gh; % Needed only with Polak-Iibiere Method
9-1 gk - eval(gcall); OPTIONS(11 a OPTIONS(11+ 1;
98
99 %beta - ((gh-ghold)'egh)/Sknorm; % Polak-Iibiere Method

100 2ghnorn - noru(gk(:));

1 01
.02 beta - nozu(gh(: ))/ghnorm; % fletcher-keeves Method
103 ghnorn a botaeghnorm;
104 else
105 beta - 0;
106 alpha - 601;
107 ghnoru - norm(gk(:));

1 08 if OPTIONS(1))0. disp('Raset alpha-'), end
109 end
11'0

11 if OPTIONssw),
112 disp([sptilltf('25.Of %12.3g %12.3g ',OPTIOIS(lO),f(l).OPTIONS(l8)),

11 3 sprintf('212.3g ',ghmorm),how]);
114 end

116 if OflxONS(19)'O I nargout>3,
117 if OPTIONS(IO)>-history(lengph(histOry(: .1)) ,1)+OPTroEs(19),

118s history - (history;[OPTIONS(1O),f.fOPTIONS(IS) gkaorm]J;
119 end
120 end
121
122 % Teot for convergence as relative change in F.0
123 if abs((feld(1)-f(l))/(fold(l)+eps))(OPTIONS(3)'
124 w~oPTns(e) - f(i); opTIONSS(1) - ghnorm;

1 25 disp('Nelative function cheap criteria met.'), break
126 end
127 fold - f
125 end
129 OPTIONS(S) f- )
130 OPTIONS(15) =gknorm.
131 3 - f

B.2.5 lsearch~m
1 functien Ealpha~f she,] a lsearch(M NzO~alphal~fO,go.Pl,P2,P3,P4,PS,PG,P7,ft,P9,PIOPiI.P12)
2 2LSIAMC Inexact line search.

4 % (ALPIIA.F.N] - LSKA*CU('FUN'I X.LPKA,F.0) perferms an inexact
2 line search ef the 1-0 function 'VO='. 'FUN' is a strin variable

s % that defines the name ef am *-file function to be minimized. The
7 % functien should return a scalar Vovol, f73(R). I is the initial
a % starting peint. F end 0 are the value and gradient of the function
s % at the initial point 1. 0 mast be negative (i.e., downhill). ALPIA
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10 % is an initial guess for the step length (i.e. XI * X + ALPHA). U)
ii 2 LSEMACH returns the step length ALPHA, the function value F, and
12 % the nmber of function evaluations S.
13 %
14 % Up to ton additional parameters can be passed to 'fun' using
ii % [ALI'A.F,3 = LSKARCN('FUI',X,ALPHA.F,G,P1,P2,P3,...) in which cue 4
16 % the function is called using FU1U(x,PI,P2,P3,...).
17
18a % Clay M. Thompson 4-11-91
19

20 shouSteps . 0;
21 shoWPlot = 0; 0
23 tol = Is-?; % Ninimm tolerable value for alpha
24
25 % Check for valid initial condition.
26 if gO>O, error('Ilnitial gradient is not downhill.'); end
27

28 % Form call string
29 parms a C(XI;

30 for n-6:nargin
31 panPrmoe C [pais,',P',int2str(n-);
32en0
33 if any(FUU<48). fcall C [FUNparm I.')']; else fcall - FUI; end
34
35 how '
36 n C 0;
37
38 if showSteps, disp(e---Alpha ------ Function Value'), end
39 if ShosPlot,
40 hold off. plot((O Sealphal].[fO(1) fO(1)*Sealph&legOJ,'b-'), hold on
41 plot(0,fO(1),'bo'),42 oC-nlphal :aiphal/lO :Sealphal ; 0

43 end
44
45 while n<9.
46 % Evaluate function at xal1ph&l.
47 x = x0Oalphal;
48 fl= eval(fcall); n - n+1;
49 if showStops, disp(['l: ',num2str(alpkal),' ',num2str(fl),' 'how]), end
so if shouPlot, plot(alphal.f2(l),'bo'), end

52 % Fit quadratic function to the points zO,xl. f - asx-2 + bex + c. 0 0
53 c - fO(1); b - gO; a = (fl(l)-boalphal-c)/(alphalsalphal);
54
55 it showPlot, plot(spolyval((abc],a),'r-'), end % Fitted curve

56
57 % Determine next jump based on the quadratic fit.
58 if (a>eps), % Jump forward but not too much.
59 alphaq C -b/(2sa);
60 if (alph&q<S*alphal) A (alphaq-nalphal),
61 alpha2 a alphaq;

62 how C how, 'quadratic fit; 'P;
63 else
64 alpha2 C Sealphal;
65 how a [hoo, limited jump; ';
66 end
67
6f eloeif (a<eps), % Optimum is maximum, jump forward.
69 alpha2 - Sealphal;
70 how - (ho, 'Increase step size (q); '];
71
72 end
73
74 % Evaluate function at x*alpha2.
75 x xO + alpba2;
76 f2 -eval(fcall); a -n7* ;
7 if showSteps, disp(['2: ',num2str(alpha2).' ',num2str(f2(1)),' ',hoe]). end
78 if shorPlot, plot(alpha2,f2(l),'x'), end % Chosen point
79
so % Check for adequate solution
si % if (f2(1)<mi(fO(i),fl(1))) A (alph&2<alphal). ,
S2 % alpha C alpha2;
83 % f - f2;
84 % break % Normal exit
s5 2 end
: 6
57 % Try to fit a cubic function, f - aox*3 + box-2 + cox + d.
88 d - fO(l); c a gO;
89 alphasmat - [alphal.'3 alphkal.2; alpba2.'3 alph&2.'2];
90 if rcend(alphmt)(eps. % Cubic solutien is invalid, use quadratic
91 alpha - alpha2;

• • • •• • •0

I0 mI I mImm 0 0mm mu 0u 0 0 0 0 0
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92 f 1f2;
93 return % Norm3l exit94 end

.: :bh. *lphamat\[fl(l)-ceolphal-d;f2(l)-cealph&2-d];

. a - ab(l); b - ab(2);

97
9: if shoePlot. plot(s,polyval([Eb,cd]5,),Ig-1), end 2 Pitted curve
99

i0o % Check descrlminent
101 del - bsb-30aSc;
102 if (del>O) & abs(a)>eps, % Solve for roots.

103 alpha3 - (-b~sqrt(del))/(3*a);
104 elseif abs(a)(eps % Fu~ctian looks VEIY quadratic.
1o5 alpha3 - elpha2;
106 else
1o7 alpha3 - inf; % Flag invalid fit.
o.8 end

109
110 if alpha3(O, % Reduce step size and start over.

ill alphal - nin(alphal.alpha2)/2;
112 how - [hoe Reduce step size (c); '3;
113 if showStop5, disp(['3: ',,um2str(alph3),' ',hoe]), end
114

115 elseif alpha3"inf, % Increase step size and start over,

116 alphal - Semaz(alphal,alph&2);
117 how e Chow,'Invalid cubic fit; '1;
118 if showSteps, disp(['3: ',num2str(alph&3),' ',hoe]), end
119
120 else

21 if (alpba3-alpha2)/alpkal < .01, % Kxtra function evaluation set necessary
122 f3 - in f;•

123 else
124 hoe a [ho.,'Cubic fit; '1];
125 % Evaluate function at xealpha3.
126 x a tO + alphS3;
127 f3 • evul(fcall); a • n+1;
128 if showSteps, disp(['3: ',num2str(alpha3),' ',num2str(f3(1)),' ',how]), end

129 if showPlot, plot(alpha3,f3(1),'X'). end % Chosen point
130 end

131
132 % Check if minimum is bracketed.
133 ftest - [fl(1)Jf(1),f3(1 0 0
134 1 - find(min(ftest)-ftest);
135 alpha - eval(Ealph&a',int2str(i(1))]);
136 f a eval(['f',ist2str(i(l)));137

138 if (f(l)<fO(1)) A (abe(alpha)>tol),

139 return; % Normal exit
140

142 elseoif abs(alp n)(tol, % GRAD may not be accurate.
142 x a tO + tol;
143 f - eval(fcall); n a n+1; 0
144 alphba = ISerad(D)etol;
145 ho . [how, 'n-dow ump; '];
146 return
147
148 else
149 %if alpha-min([alphal.alpha2,alpha33),
150 alphal - ulpha/2;
151 how = (hog 'Reduce step size (b); 'I;
152

153 % else
154 % alphal = alpha;
155 % how 0 hno, Choose smallest; '];
156 end
1 57
158 end
159
16o end % while

161162 % Abnormal exit. No improvement in cost. Use mwi value for alpha
163 f B fO;
164 alpha 0 0;

1i65 disp('VARUING: ceseded 9 line search attempts.')

B.2.6 filter2d.m
I function a a filter2d(astencil,rosise)
2 VLTIR2D Two dimensiomal computational stencil filtering.
32%
4 % I = FILTER2D(ASTRCIL) returns I which is the result of 0
5 % applying the computational molecule STUCIL to the matrix A.

• • • •• • •0
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"% It SIZI(A) is mm-by-na sad SIZE(STIUCIL) is ms-by-ne then

% 7 SIZE(Z) is (a -l)-by-(nas-1).
97.
0o %. FILTfl2D(ASTEUCIL) is the am* as COUM2(A.C0TOO(STEECIL.2))

12 % Clay R. Thompson 1-15-91
13

[: Lmnsi - size(stencil);
• an s size(a);

16
1 % This calculation is the same as colv2(arot9O(etencil,2))
;i %. but is faster. 0

19 it 0,
20 x ; zeros(ma+ma-Inse•n-1).
21 for i=1:ms
22 for j*l:ns
23 w = stancil(ms-i~i~ns-j+t);
24 it 8"00,
25 x = x + [zeros(i-1,j-1),zeros(i-1,na).zeros(i-1.ns-j);
26 zeros(ma, J-t) ),wa, eros (aa,aa-j) ;

27 zeros(m.-i,j-1) ,zeros(ws-i,na) ,zeros(ms-i,ns-j)];
28 end
29 end
30 end
31
32 else
33 : = conv2(a,rot9O(stencil,2));
34 and
35
36 if narginin3, % leturn the central (valid) part.
37 roew : ms- + [1:m -as1;
38 col CI+ n-s~
39 x - x(rows,cols);
40 end
41

B.2.7 cfilter2d.m
i function cocfilter2d(a,b,grad)
2 7.CFILTE12D Filter bicubic approximation of array.
37. % -
4 % C * CFILTER2D(A.B) applies the filter 8 to the array A where
s A is interpolated using bicubic interpolation.
67%

7 C - CFILTU2D(AB,,grad') returns the convolution of 9 with A
a % for a gradient calculation.

97.
1o % The cubic approximation is used extrapolate a 1 pixel border

ii % around the array A.
127%
13 % See also: FILTEU2D.
14
15 7. Clay N. Thompson 4-30-92
16

17 [mane] = size(a); % Size of array.
.s (mb,nb] = size(b); % Filter size.
19
20 It nanSin-2,
21 it nb>),
22 a e [3ea(:.1)-3ea(:,.2)÷a(:,3),a,35a(:,na)-3ee(: ,na-1)*a(:,.na-2)J;•

23 oN

24 if mb>1,
25 a * [3ea(1,:)-3ea(2,:)÷a(3.:);a;3ea(ma.:)3ea(a-1,:)+a(ma-2,:)];
26 end
27 c - filter2d(a,b.'resize');
28 else
29 c s filter2d(a,b);
30 it ab>1,
31 c(:,2:4) a c(:,2:4) + c(:,1)*[3 -3 1];
32 c(: ,naenb-4:na4nb-2) s c(:,ae'nb-4:sa4-b-2) + c(:,na4ab-l)*El -3 3];
33 c S c(:,2:nboaa-2);
34 end
35 it mb>1,
36 c(2:4.:) a c(2:4,:) + [3;-3;1]oc(1,:);
37 c(ma4mb-4:me4mb-2,:) - c(masmb-4:maemb-2,:) + [1;-3;33ec(ma4mb-1.:);
38 c = c(2:nb4ma-2,:);
39 *ad
40 end
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B.2.8 hbasis~m
ifunction y - hbasis(z,n,0por)0

2 %O3ASIS Nap from hierarchical basis representation to nodal

3 % representation.

s % Y - UASIs(1,1) or T a MRASrS(X,I.'1nodal) maps I from a

% hierarchical basis with I levels to the nodal basis.

a % Y - KBASIS(X.,',trans') maps from the nodal basis to the

9 hierarchical basis with I levels using the adjoint map.

10 %
ii % T - DASIS(1..I'inv') maps from the nodal basis to the

12 % hierarchica~l basso with I levels.
13 %
14 % Y - UUASIS(Z.,Itiuv') maps from the nodal basis to the

is % hierarchical basis with I levels using the adjoiat map.
16

i% Reference: "Fast Surface Interpolation Using Neirarchical Basis

is % Functions", Richsard Sseliski. IEEE PAMI. Vol 12, No. 6, June 1990.

20. % Clay R. Thompson 4-2-91
21 % Revised 6-10-91 by CRT
22
23 error(nargchk(2.3.nargin));
24
25 if nargin<3, code a 'no'; else code =oper(1:2); and

2627 % Check to make sure the size of x is compatible with a levels.

28 EM, na] a size(s);
29 sner a 2'(4-1);
30 if mm~incr I nn~incr.
31 rrr(acdimension of X must be larger than '.int2str(incr),

32 1for ',int2str(n),' levels.J);
33 end
34
is if cod&- no', % operin'nodal'
36 y - zeroo(mmnn);
37 rows - 1:iacr:in; cols - 1:iocr:nn;
38 y(rows~cols) - z(rows,cols);
39 for ee(n ):l
40 irows, 2* rm(=-1~incr) ~** incr; acols e2*r=(nn-1 ,iucr) >- incr;0
41 incr =incr/2;
42 row2 1:incr:=; col2 - 1:inkcr:nn;
43 y(row2,col2) =hb(y(rows,cols),xroffs,Zeols) * (row2,c*22);

44 ~ ros~cls)= y(rowsecols) - z(rows,cole); % Remove extra term
45 rows - rw2 col - c*l2;
46 end
47,
4a elseif code'tr', % oper.'trans',
49 Y zeroa(mm,nn);
s0 sner - 1;
51 rows - 1:iacr:in; cols * 1:isncr:flB;
52 y(rows.cols) - z(rows.cols);
S3 for eee:1)
54 suer - 2eincr;
55 row2 0 1:incr:m ; col2 - 1:incr:nn;
56 y(row2,col2) - 1(row2,col2) + hbt(y(rows,cols)):
57 rows a row2; cola a col2;
so end

60 elseif code'mia', % oper'liav',
61 incr a 1;
62 y - beres(mmam);
63 rows - 1:iacr:=; cols - 1:istcr:nn;
64 y(rows,cels) - z(rows,cole);
65 for level*1:(n-1),
as incr - iscro2;
67 row2 a1:incr:m; co12 - 1:incr:nnl:
as &rew - 2*ram(mm-I,incr) >- incr; sacle 2* rem(nm-1 .incr) >- incr;

a9 y(roes,cels) : y(rews,cels) - b(y(row2,cel2).ltews~xcols);
io y(rov2.coI2) aý y(r~w2,col2) + x(row2,col2); % Add back extra tern

7'1 rows a rew2; *-zl am co12;
72 ,ad
73
74 elasif codein'ti'. Z operotinavI,
75 Y a zrers(inmaa);
76 rows *1:incr:in; cola * 1:incr:nn;
77 71;a
78 for Ievele(s-1):-1:1.
79 incr a imcr/2;
so row2 a1:incr:mm; col2 a 1:incr~na;

Si (rews,cols) * y(rewa,cols) - b%(y(row2,col2));
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12 rove a rov2; cols - col2;
53 end
84
S5 ele
:6 error(['The operation ',oper,' is invalid.']);
87 end 4'.
88

89

B.2.9 hb.m
1 function y-hb(x,xtrarows,xtracols)
2 %H8 Interpolate a 2-D function on a rectangular grid using
3 % Hierarchical Basis functions.4 %
5 Y = Y (HB() returns X interpolated to the next level. If X is
6 % n-by-n then Y is (2*m-l)-by-(2en-1).
i
a % Clay N. Thompson 4-2-91
9

10 col n" : .51;
11 rovmssk .5
12
13 if nargin<2, xtrarows = 0; end
14 it nargin<3. xtracols 0; end
15
16 [mn] = siza(x);
17 if xtrarows I •tracals,
18 2 - [x,2ero•(m,xtraco" ';zeros(xtrarows,n) ,zeros(xtrarows,xtracols)];
19 end
20
21 [1,n] = - Si());
22 mi U 2em-1; nn = 2e•-1;
23 oddrows * l:2:i;
24 evonrOws = 2:27L-1;
25 oddcolS . 1:2:nn;
26 evencols - 2:2:nn-I;
2,

28 y a aeros(minn);
29 y(oddrows,oddcols) - x;
30 y(oddrousevencols) = filter2d(x,co3-mk, 'resize');
31 y(evenross,:) = filter2d(y(oddrows, rowemsk,'resixe'); * *
32
33 if •trarows I ztracols,
34 y - y(i;ml-xtrarovs,1:nn-xtracols);
35 end

B.2.10 hbt.m
i function y = hbt(x)
2 %INT Decimate a 2-D function on a rectangular grid using Hierarchical Basis
3 % function*. S
4%
s % = NIIT(X) returns X decimated to the next coarsest level.
6 % If X is r-by-n then Y is ((mI1)/2)-by-((n+I)/2).
7%
8 % lote (meel) and (ns+) most be divisible by 2.
9
0o % Clay N. Thompson 4-2-91

1!
12 MAn] M -ixe(x);
13 roes [1:2:m]; cola " [1:2:n]; S14 a e [0,zeres(1,n) ,0:zeoso(m,I),x~xerosm.I~) ;0,xeros(1,n) ,0] ;

is
16 y - a(rows, cols) + 2ea(roes, cols41) + aOross, cols+2) +
17 2*a(rows+1,cols) + 2*a(rowsvlcols+2) +
28 a(rows2,cols) + 2*&(rows*2,colsC1) + a(rows*2,cols+2);
29 y e y/4;
20
21

B.2.11 interpx.m S

1 function Foisterpx(I,z)
2 %IITUIX Linear interpolation in the x-direction.

4 1 F = INTlMP(I,I) returns a matrix F containing the values of a
5 % at the points X. The matrix X muat have the *me umber of rows em
6 % 1. The values in the matrix I must be betwoes 1 and 5. where I is
7 % the member of columns of 9. The value gal will be returned where
a % this is mot the cse.
9

00

0 0 0 0 0 0 0 0 0 0
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10 % Clay R. Thompson 10-17-90

i4 if mz-em, &rrer(KZ must hawe the same number of rows am E.'); end

16 % Compute nearest x position. xlo..
17 slow - floor(s);

1: noutt *U(sn):
19nou sum(out(:));

20 it aout)O, zlov(out) - (n-1)eones(Rout,l); end4
21
22 % Check for out of range values of x and set to 1
23 out =(1<1)1(iXii);
24 neut =sUm(out(:));
25 if Rout)0. X(OUt) - 0nes(nout.1); Xlow(out) - one2snoot,1); end
26
27 % Determine index into matrix elements
25 2 lote: Y-[t:l m'001GOne(I:nOx;
29 else. - 1:rn]'wmones(l:nx) + (xlov-1)ONm
30 E (eleat) + (X-sloN).5(el.m-ee);4
31
32 % Set values of F where x is out of range to Bla
33 if any(out(:)). F(out) - Uaieones(nout.1); end
34

B.2.12 domain2d.m
i function [x.yJ - domain2d(x,y)
2 2flONAI12D Generate I and Y arrays 'for 3-d plots.
3 % (1Z.YY] - DOKAIN2D(X,Y) transforms the domain specified by vectors
4 % X and Y into arrays UI and YY that can be used for the evaluation
s2 of functions of two variables with 3-d mesh plots. For example,

6 % to evaluate the function xeexp(-zx2-y-2) over thw range -2 < x < 2
72% -2(<y <2,

2 % x,yJ m* shdom(-2:.2;2. -2:.2:2);
10 2 x - a .. exp(-x.-2 - y')
11 2 mesh(s)
1 24
13 % J.5.3 Little 12-2-85
it % Revised 20-Nay-9O, LS.
is % Copyright (c) 1985. 1986. 1990 by the Nath~orks. Inc.

16 nx length(s);
1s ny -length(y);

19 x x(:).; % make sure x is a row vector
20 x = (ones(ny, 1),.).
21 y =y(ny:-l;1); y - Y(:); % make sure y is a column vector
22 Y y(. ,oneS(1, nx));

B.2.13 icubic.m
ifunction Fxicubic(s~y,u)

2 %ICUBIC Cubic Interpolation of a 1-D function.
32%

2 F-ICUIC(Y,11) returns the value of tI~oe 19 function Y at the
2 points X1 using cubic interpolation longh(F)lIength(1), X1 is

6 2 an index into the vector V. Y is the value of the function
% evaluated uniformly on a interval. If V is a matrix, then

a % the interpolation is performed for each column of Y

10 % If Y is of length I then 11 must contain values between 1 and I
i: 2 The valse Nla is returned if
I. % this is not the case.
13 %
14 % F - ICUNIC(X,Y.K1) uses the vector X to specify the coordinates
is 2 of the underlying interval X must be equally spaced and
16 2 monotonic 11 must lie within the coordinates in 1.
I- 2
io 2 Sao also ILIBKAK
19
20 2 Clay M Thompson 7-4-91
21
22 2 lased on "Cubic Convolution Interpolation for Digital Image
23 2 Processing", laoer% G. leys, Ilfi Trans. on Acoust ics, Speech, and
24 2 Signal Processing. Vol. 29, 1o. 6, Dec. 1981, pp. 1153-1160.
25
26 if nargin-2. 2 mo I specified
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2' V .y; y a ;
2: % Check for vector problem. It so, make everything a column vector
29 it yx~ie~).1 - y(:); and
30 if mi~ieu).,u - u(:); end
3 1 (arosenacols] - sixe(y);
32
33 elseif nargin-3. % X specified.
34 % Check for vector problem. It so, make everything a colmna vector.
35 ifti~is~)1 y - y(:); end
36 if mi~iez),z a 1(:); end
37 if min(size(u))1 u u; end

En (rossencols] = -L.0);
39 % Scale and shift u to be indices into Y.
4o if (mnse~)e) rror('Z must be a vector.'); end
41 x~ a (:);
42 [m~n] size(a);
43 if a a. rose.
44 srror('The length of X mast match the number of roes of Y.');
45 end
46 u 14(u())(nosl/xm-l);
47
48 else
49 error(,Vrong number of input arguments. 1);
so end
!11
s2 if nrous<3, arror('Y most have at least 3 roes.'); end

54 if A-1, U - ueOn*5(1,ntCols); 101n]1 - SiZe(U); end % Expend u
55 if n--acols, *rror('fle number of columns in 11 and Y must match.'); end
56
57 Check for out of range values of u end set tO I

ss uout efind((u<1)Iu~nrows));
S9 nuout e legth(uout);
60 if nuout>0. u(uout) - ones(nuout,1); end
61
62 % Interpolation parameters
63 s =(u - floor(u));
64u floor(u);
65d -find(uinnrows); if langth(d))O. o(d) -*Wud-1; s(d) =s(d)+1; and

66
6' % Expand y so interpolation is valid at the boundary.

69 nrols 0nrows+
70

71 % low interpolate using computationally efficient algorithm.
'2 *2 - s-ee; *3 - s.*s2;
,2ndz - u~ones(s,1)*(O:on1)enrows;

74 F a y(ndx).q(-s3,2es2-s) + y(ndz~l).*(3es3-Se52+2) +
.1 y(ndz.2).*(-3es3+4os2+*) + y(ndx+3).e(a3-s2).

76 F - F/2;

,s % low not out of range values to SaB.
79 if nuout>0, F(uout) - *aloones(nuout.1); end

B.2.14 dcubicx.m
i function Gedcubicx(x~y~u)
2 %DCUUICX Derivative of Cubic Interpolation of a 1-D function e.r.t. x..
31%
4 % G - OMCUcI(Y,hI) returns the derivative of the I-D function Y-f(a)
-, at the points X1 using cubic interpolation. eghG*eghI)
6 % 11 specifies the points originally used for the interpolation.

% If Y is of length I then X1 must contain values between I end 1.
% The value Nag is returned if this is not the case.

% a - DCURICI(XY,11) uses the vector X to specify the coordinates
12 % forY as for ICiJ IC.
13 %
t14 % e al0so4. XWNC. S

15
16 % Clay N. Thompson 7-18-91

is % Based onk "Cubic Convolution Interpolation for Digital Image
19 % Processing", Robert 0. Keys, IKU Trans on Acoustics. Speech, and
20 % Signal Processing, Vol. 29. No, 6, Dec. 1981, pp. 1153-1160
21
22 if nargin-e2. % No X specified.
23 U .Y, 7.1;
24 % Check for vector problem. If so,* make everything a column, vector.
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25 f i(ie)),y = y(:); and
26 if*nhs~).,u . u(:); end
27 [nrowss~celsJ - size(y);

29: elseif margia-3, % I specified.
30 % Check for vector problem. It so, make everything a column vector.
31 if min(size(y))mml, y - y(:);ed
32 it min(siaz(z))-.al x - (:); end4
33 it i~i()1 u a u(:) d
34 (nrowu,ncols) - size(y);

35 %Scale and shift u to be indices into Y.
36 if (isie)) ),error('I must be a vector.'), end0

38 [M.n] asize(a);
39 if m - areas,
40 error('Tho length of I must match the numnber of rows of Y. ');
41 end

4 2 u 1*(uxl)(nosiIzm-())
43
44 else
: 5 error('Vrong number of input arguments.');
46 end
4?
4s if nro~ss3. error('Y must have at least 3 rows.); end
49 [Mn] - size(u);
so if nAnl, u - Ueones(1.ncols); [an] a size(u); and % Expend u
51 if n--ncols, error('The number of columns in It and Y must match.'); end
52
S3 % Check for out of range, values of u and set to 1
54 gout *find((uC1)IU>1krOWV));
55 nuout 1*4legt(uont);
56 if nuout>O, u(uout) a ones(nuout,l); end
57
ss Interpolation parameters

59 s - (u - floor(u));
6o u a floor(u);
61 d - find(u-nrows); if length(d))O, u(d) - u(d)-1; s(d) *s(d)4l; end
62
63 % Expand y so interpolation is valid at the beundary.

654 ye- [3ey(l,:)-3ey(2,:)*y(3,:);y;3ey(nrows,:)-36y(nross51.:)*y(nrovs-2,:)];
6a rsona nrows + 2;

67 w . interpolate using computationally efficient algorithm.

69 nds a u~ones(m,1)O(O:n-13enrows;
7.0 a - y(ndx).e(-3es2#44eat) + ytndz.1) *!90s2-0oes) +
71 y(ndx+2).e(-9*s2+*Ss+1) + y(ndx+3).e(3*s2-2*s);
,2 0 - G/2.

74 % Boo set out of range values to Bal.
's if nuout>O, G(uout) =Uioe~uu,) n
76

B.2.15 dcubizmm
ifunction g-dcubicy(x,y,udJdf)

2 1.DCVBIC Derivative of 1-D cubic interpolation ur~t. Y.
3 %

4 % G DCtDICY(Y,11,dJdF) computes the derivative of the cost
!, function J(P) with respect to the underlying variables Y. The

6 % matrix dJdi is the derivative of the cost function with respect to
7 the interpolated value F a ICUBIC(Y,11). 11 specifies the points
8 % originally used for the interpolation

io % G - DCWICY(I,t,Xl,dJdF) uses the vector I to specify the
ii % coordinates for T as for ICVBIC.
12 %
13 % See also: ICUBIC.
14
15 % Clay N. Thompson 7-12-91

if nargine.3. % No I specified.
%S ddf~cu:. u toy; " z.

19 Chec forvco problem. If so, make everything a colums vector.
30 if mi~iey)m.y a y(:); end
21 if min(size(u)).U1, u a u(:); and
22 [nros~sncols] - sise(y);
23
24 elseif nargin-4. % I specified.
25 % Check for vector problem. If so, make everything a colums vector.0
26 if min(sise(Y))-1, y - y(:), end

00
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2-F if xi~iez)il z 1 (:); sand
28 if mi0ieu)1 - u(:); end
28 (nrolgsaCelsj - size(y);
30 %Scale and shift u to be indices into Y.
31 if (nia(siza(z))1), error('Z must be a vector.'); and
32 1 - ()
33 (m~n] -size(x);
34 if m - nross,
35 error( 'The length of X mast match the number of rows of V. ');
36 end

38
39 elso
40 orror('Vrong number of input arguments.1);
41 end
42
43 if nrows<3. orror('Y =ast have at least 3 rows.'); end
44 (m.n) S size(U);
45 if A-1l. U - U0on4s(l,ncols); tm,n] size(io); end % Expand u
46 if any(siz&(u)-.sizs(dJdf)), arror('dJdF end XI must be the same size-'); end
47 if n--ncols, error('The number of columa in X1 end Y =a~t match.'); end
48 if m<2, % Expand u (so sums mork) with an out of range value.
49 u ;f[u;zero,*(1,na); Em~n] - size("~).
5: did Edidf;zeros(l,n)1;
-%i end
52
53 % Check for out of range values of u end set to 1
s4 uout =find((u<1)Iu>nrows));
5 Anuent length(uout);
s6 if nuout>O. u(uout) - ones(nuout,l); end
57
ss Interpolation parameters

59 s (u - floor(u));0
60 u =floor(u);
61 d =find(uinnrows); if longth(d)>O. u(d) *u(d)-l; s(d) =s(d)+l; end

63 ~Comuteterm for fradient
64 2 * se; 53 - a.-**2

635 tO a didf.*(-s3+2os2-&);
66 tI dJdf.*(35a3-Ses2+2);
67 t2 adJdfs(-3*s3+*4s2+s);
68t3 - didf.s(s3-s2);
egclear a s2 s3

70
71 % Set out of range terms to zero.
72 if Auout)Q,
73 WOuout) - zaros(suout.1);
74 tl(uout) - zeros(nuout,1);
75 t2(uout) - xeros(nuout~l);
76 t3(uout) - zeros(nuout.l);

dldf(uout) - zeroo(nuout~l);
78 and

so Form sums for each z value.
:81 tosum - zeros(nroos,ncols);

82tlsum - zeros(nrovs.ncols);
83 t2sum * zeros(nrows,ncolsi);

64 t3sum - ztros(nrous.ncols);
as for k-1:nrows,

86 *elm =fxnd(u-k);
817 temp *zeroa(m,n);
as temp(eleu) - tOelm); t~sum(k.:) sum(temp).
89 temp(elem) - Wa~les); tlsum(h.:) - sam(temp),
90 t%*p(*I=) - t2(elem); t2sum(k,: ) - sua(temp),
91 temp(elem) - t3(*lom); t3sum(k.:) - sum(tomp);
92 end
93 clear tO ti t2 t3
94
95 % Add terms from boundary conditions

96 tlsum(1,:) - tlsum(1,:) 4 3$t~sum(l.:);
I7 t2sun(1.:) - t2suin(1.:) - 3st~sum(1,.);

88 t3sUm(l,. ) - t3sum(i, +) tOsum(l,
990

100 t2sum(m-1, :) *t2sum(mr1,;) + 3et3sum(wl ;);

10 tluo -. :i tsmm1: 3st3sum(m1, :);
102 t~sum(m-l, :) t~sum(m-l. ) *t3sum(m-1.;),
1 03
104 % low combine to form gradient.

I 0s g - zeros(nrowse~ncols);
.06 g(l. ) - tOsum(2, ;) + tlsum(l,:);

I107 1(2, :) - t~sua(3, :) + tlsum(2,:) + t2sum(l. 1;
.3 for k-3:aross-l,

109 (k. .) - tOsum(k+l, :) + tlsum(k. .) + t2suff(k-1. :) *t3sum(k-2,)
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iii g(nrows.: ) * tlsuu(nroa, : ) * t2sm(nroua-1, :) * t3slnmtnos-2. : )
112
113 g S/2; 0
114
115
116



Appendix C

Test Surface Descriptions

This appendix contains information on how to create the crater and hill test surfaces
and associated test images.

CA Crater Surface 0

The crater on the flat plane is formed by intersecting two spheres, one with radius
10 and the other with radius 9.48, with a flat plane. The routines makepair4 and
crater-depth were used to create the crater images.

C.1.1 makepair4.m
i % Make stereo pair (this is the best routine)
2 clear
3 DMTH - 'crater-depth'
4 %DRPTM - ,sphereodepth, '
s %GILAD - 'crater.grad'
6 n - 65; % The size of image.
- mu - 1; % Optimization parameter

9 b - 500;
I0 f - -1000; % We are working in the same coordinates as the surface for x £ y.

12 % Camera coordinate calibration
13 so = eval([DKPTU.'(O,O)'])
1. vO * 0;
15 vI = vO * bet/O/2
16 v2 * vO - bef/zO/2
17
is ganma feb/2;

19 delta = :0/f;
20 if I % Case a (Hard case)
21 psI = .1; qsl .1;
22 ps2 -. 1; qs2 - .1;
23 prefix - ['cr',inut2str(a),'a'].

24 else % Case b (asy case) 0
25 ps:1 .2; qeia-.5;
26 p 2 -. 3; qe2 * .1;
27 prefix a ['cr',int2str(n),'b'];
26 end
29 %psi - .5; qsl = -. 6;
30 ,ps2 a .5; qs2 = -. 6;
31 %pSI 0 0; qel - 0;
32
33 [xy] - domain2d(-12:24/(n*1):12,-12:24/(n*1):12 );
34
35 % Image parameters

159
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36 delta: a (i.2)-z(i,i);
37 person a C/deltas Fecal length for unity spacing grid
3s b % baseline distance0
39 30 % Calibration depth
40 psl;qsi;p@2;qs2 % Light positions
41 (z(2.2)+v1i)delts~z-1 % i-calibration as offset from 9(1,1).
42 y(2.2)/deltas-n % y-calibration as offset from EUi,1).
43 (z(2.2)+v2)Idelt az-i % i-calibration as offset trom Z(1,1).
44 y(2,2)/deltasx-n % y-calibration as offset from 2(1,1).
45 1 % Grid spacing
46 1;
47 del azsmzz:)i~())f(*)

49

so eqmesb(z,del)
51 tjtl*('True Surface')
52
53 % Determine depth function, for left image (1)
54
55 err a 1; m a 0;
56 zi a goemones(s);

57 gomba/zo
58 while (err> 1.*-5)k(m(2S).
59 ztemp, a eval([DEflU'(x4v1geamM./Z1-v0.7)'1);
60 err a sumn( (xtemp(:)-Z1(:)).-2)

61 zj a 1 + aue(itempizl);
62 mam+1;
63 end
64 *qM*sh(Z1,del)

65 titlo('Left Surface')

67 1etrmine depth function for right image (2)0
65 errd*a 1; *a0
69 Z2 a z~fmones(x);
70 while (err>i.o-6)k(m(25).
71 xtemp, a eval([DEDU,'(z4Y2+gemma /z22YO.7)']);
72 err a sm( (ztemp(:)-z2(:)).-2
73 z2 a 2 + moe(ztemp-z2);
74 a0m-1a
75 end
7oz qmesh(z2,del)0
7-titie(light Surface')

78
,9 hr a[-1 0 11/2;
so by a Ij :0-I]/2;
si rows a2:n*1;
92 Col18 2:n~l;

84 % Right Image
ab zz a filter2d(zi,hz, 'resize')/deitaz;

6 y a filter2d(zi,hy,'resize')/deltaz;
87 1 a1 feaz(rows, :) ./((x(rows,cols?+wl) .Szx(rows, )+zl(rows~cols));
as q1 feay(:.cols)./(y(rows~cols).ezy(: .cois)4zi(ross,cols));
89 21 armap(pl,qlpsl,qsl);
90
91 % Left Image
92 z2 a filter2d(z2,hz,'resize')/deltax;
93 2y a filter2d(z2.hy, 'resize')/deltax;
94 p2 a fezx(rows,:)./((z(rows,cols)*v2).6z2(rows,:)*z2(rows~cols));
95 q2 a fezy(:,cols).I(y(rows,cols).*zy(: .cols)+z2(rows.cols));
96 32 a rmap(p2,q2,ps2,qs2);
97
9s % Center Global coordinate system
99 zz a filter2d(z,hsz,'resize')/deltax;

100 27 a filter2d(z,hy,'rwsi~ae)/deltaz;
ioi p a femx(rees,:)./(z(rows,cols)9Ozx(rows,.)*z(rows~cols));
102 q a f~zy(: ,cols)./(y(rows,cols) *zy(: ,cols)+z(rows,cols)),
103 £ a ruAkp(p,q,ps2,qs2);
104
105 cigs,
106 subplot(121), eqmesh(zl,del),
107 aubplot(122), *emesh(z2,del)

109 subplot(11l), title('Image contours')

110 mimage((i,zeros(&,i).392],[O 13)
111 clear ptlq1p2 q2 xs my piqlgaina ermn t
11 2 clear psi ps7 qsl qs2 zO b~b delt hi h rows cola vi v2
113 clear mu Z Y doltas
114
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C.1.2 crater-depth.m
1 function [(zrho]edepth(zy)
2 %CUATUoDDTF Depth fanction for crater on a flat plan.3 %
4 % Z 7 CUtATE1.DEMTU(I,Y). I and Y must be of the same size.5 %
6 % Crater is defined betueen -10 <( zy <- 10.
7
SzO : -1000;

9 r1 - 10; r2 = 9.48;
10 dl = find(i.ex + y-ey <= 0.7Serlerl);
ii d2 - find(.ezx + y.ey <• 0.7?Sr2er2);
12
13 [0,n] = size(K);
14 Z - zosoaes(f(,n);
Is z(dl) - x(dl) + sqrt(rlerl - x(dl).*z(dl) - y(dl) ey(d1))-5;
16 z(d2) = min(z(42). z0+12-sqrt(r2er2 - x(d2).ez(42) - y(d2).ey(d2)));
17
1 s %a - zO ÷ (z-zO)/2; % leduce height by two
19
20 if nargout>t.
21 % Albedo (rho)
22 rho - mones(z);
23 d - find(abs(z-y)<3);
24 rho(d) - 0.7emonen(d); % Dark strip across diagonal
25 end

C.2 Hill Surface

A fractal based method was used to create the underlying data matrix for the hill
surface. Given this underlying data matrix the hill surface is formed using bicubic
interpolation to define the surface points. The data for the hill is shown in the matrix
(DATA-MATRIX) below.

0.7210 1.0934 1.1456 0.7672 0.5582 0.6868 1.0628

0.9350 0.4301 1.2280 0.4993 0.5555 0.8574 0.3552
0.8864 1.0791 0.2720 0.5742 0.6650 0.3307 0.2967

- 1000+ 0.7894 0.2520 0.5136 0.2594 1.1026 1.0038 0.4796 (C.1I

0.8690 0.4103 0.3271 0.5276 1.0706 1.1861 0.4380
1.1673 1.1548 0.3879 0.2889 0.3674 0.8726 0.7950
1.3493 0.4233 0.3691 0.2568 0.4342 0.6595 0.5902

The routines makepair-data and data-depth were used to create the hill images.
The mountain images were formed using a similar method based on a 33-by-33 data
matrix that is too large to be presented here.

C.2.1 makepair-data.m
i % Nake stereo pair based on data
2 clear % clear all data
3 lobal DATA.NATRII •
4 11TW n 'data-depth'
s = 65; % The size of image.
6 an - n+2; % The size of z.
7 om * 1; % Optimization parameter

: if 1, % Wrinkled surface (hill)
1o load data-matrix
11 b - SOO;
12 p:1 : -1; qal 1;
13 ps2 .3; qs2 .1; 

0

14 prefix - r'u'int2str(n),'c'].
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is else % Lake (mountain)j

11 .0 * 1000;
J5 DhTA-RAThhZ - DATA.-NAThII + z0;

20 PSle:.6; qsl .5
21 p*

2  
-.6; qs2 =0;

22 ..prefix - ('lk',int2str(n).'b'J;
23ed
2# [ad~ndJ sizo(DATA-..ATUII);
25
26 f - -1000i % We are working in the same coordinates as the surface for x y.
270
29 % Camera coordinate calibration
29 :0 - eval((DEPTU.'(0,0)'])
30 vo - -befl:012;
31 vI - VO + "1f/20/2
32 v2 - vO - bef/z0/2
33
34 gamma - feb12;
35 delt& - Z0/f;
36

3a x - ze 9; y a ys.9; % Center 90% of matrix
39
40 % Image parameters
41 deltax - x(1.2)-x(1.1);
42 params - E1/deltax % Focal length for unity spacing grid

43 b % baseline distance
44 so % Calibration depth
45 psl;qsl;ps2;qs2 % Light positions
46 (z(2 2-)+vl)/deltaz-1 % i-calibration as offset from (1.1).
47 y(2,2)/doltaz-n % 1-calibration as offset frou (1,1).
49 (x(2,2)+v2)/deltaz-1 % x-calibration as offset from (1,1).
49 y(2,i)/d@ltaz-n % y-calibration as offset from (1,1).
so I % Grid spacing
52 1
52 del *zoe(maxz((:))umin(z(:)))/f/(D+1);
53
54 2 - eVal([DEPI('xy')
55 eqm*9h(z,del)
56 Imesh(z)* 4
57 title('Trus Surface')

5: % Determine depth function for left image (1)
60
61 err a 1;m 0;
62 ZI zOOmonee(:);

63 giaMM/ZO

64 While (err> 1.e-5)k(m<25),
65 itemp - oval (DKPTU.'(2411-gamma.-/51vO,7)']);

66 err =sum( (zteup(:)-zl(:)).'2)
67 ii =i +l mus(itemp-Z1);

69 end
70 eqmosh(z1,del)
,i title('Left Surface,)

73 determine depth function for right image (2)
74 err - 1; m a 0;
7s x2 a zOemones(s);
76 while (err>1.*-5)&(m<2S).

7. ztemp, a eval(EDDTU,'(ztv2+gamma./z2-vO,y)'));
79 *rr sa.m( (zteup(:)zx2(:)).-2
79 z2 z 2 + mue(ztemp-i2);

62 emeih(z2,dol)

a 3 title('Dight Surface')
94
a9s hi - [-1 0 Q3/2;
96 hy - E1;0;-1J /2;
97? rows *2:a*1;
a6 colm 2:n41;

:990o % light Image

92 xy. filiter2d(zl,hy,'resize')/deltaz;
93 p1 fzxs(roes,:)./((x(rows~cols)4wl) *ss(rows,:).xl(rows,cols));
94 ql fesy(: ,cols)./(y(rovsscols).eiy(:.cols)*:l(rows,cols));
95 El *rmap(pl,ql,psl,qsl).
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9 Left Image 1
98 22* filter2d(z2,hx. 'resize:)/deltaz;
99 27 tilt r2d(z2,hy,1resize )/deltaz;

100 p2 = fzz(rows,:)./((z(rows.cols)+v2).ezx(rows,:)+z2(rosrs,cols));
i01 q2 -fezy(:,cols)./(y(rows.cols).ezy(: ,cols)*z2(rose,cols));
102 E2 *rmap(p2,q2,ps2,qs2);
103
104 % Center Globa~l coordinate system

I os xx - filter2d(z.hx'lresizel)/deltax;
.o my - filter2d(z.hy~lresize')/deltaz;
iv~ p - f~zz(ross,:)./(z(rows,cols)Cozx(r055,:)+z(rows,cols));
105 q - fezy(: ,cols)./(y(rows,cols).ezy(: .cols)*z(rows,cols));0

I og E - rmap(p~q,ps2,qs2);
110
iii clg,subplot(221)
112 subplot(121), eqmosb(xl,dol)
113 subplot(122), eqmosh(z2.dol)
114 subplot(1l1), title('Image contours')

116miage([K1,zeros(n,l),212jO 1])

cl: q1ý 2zzm b q jgeinaerr anaztemp0

me l arSo. lqs s q zob bf delt hx by raws cola vi v2
120 clear mu v ad ad nn deltax

1 21
12' ztrue - z;
123

C.2.2 data-depth~m
1 function (z,rhol-depth(x,y)

_ DTDEPTH Depth function based on data matrix.

4 % Z - DArA.DEM~(X,Y). X and Y must be of the maims size.

6 It M3IND] - DATA..DEPTN(X,Y) returns albedo also.

a Relies on the global DATA-MNATRIX to define surface.

10 % For DATA-NATRIX in-by-n, values in X must be between -(A-1)/2 and (n-1)/2,
ii % values in Y must be between -(m-0)/2 and (a-1)/2.

1 2
1 3 XglobaI DATA..N*ThU

5x =y -(m41)/2; y * * (na)/;
156

19 d - find(floor(x)<I); z(4) a ones(length(d),l);
20 d - find(z~a); z(d) - neones(longth(d),l);
21 d - find(floor(y)<1); y(d) a ouws(length(d),1);
22 d - find(y~m); y(d) - meones(longth(d),l);
23
24 z - bicubic(xzjtyy,DATA..NAThIX,x~y);
25 7.z - blinear(xz,yy,DATA..RAfLhIX,x,y);

26
27 d - find(isnan(z));
28 if length(d)>O, keyboard, end
29 i~f length(d)ý-O, z(d) - ones(lengtb(d),1)emin(DATA-NAThIX(:)); end
30
311 if nargout>1,
32 %d - find(abs(z-y)<1);
3' ZO - Min(Z(:));
34 d . find((s).6+sO) A (z<.7+zO));
3-, rho - moses(s);
36 rho(d) - O.7omones(d);
3- end
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